精英家教网 > 高中数学 > 题目详情
若y=cos2x+2psinx+q有最大值9和最小值6,求实数p,q的值.
分析:先令sinx=t将y=cos2x+2psinx+q转化为关于t且t∈[-1,1]的一元二次函数,然后求出其对称轴,再对p的值进行讨论从而可确定函数在[-1,1]上的单调性,进而根据其最值可求出p,q的值.
解答:解:令sinx=t,t∈[-1,1],
y=1-sin2x+2psinx+q
y=-(sinx-p)2+p2+q+1=-(t-p)2+p2+q+1
∴y=-(t-p)2+p2+q+1,对称轴为t=p
当p<-1时,[-1,1]是函数y的递减区间,
ymax=y|t=-1=(-1-p)2+p2+q+1=9,ymin=y|t=1=(1-p)2+p2+q+1=6,
p=
3
4
,q=
15
2
,与p<-1矛盾;
当p>1时,[-1,1]是函数y的递增区间,
ymax=y|t=1=2p+q=9,ymin=y|t=-1=-2p+q=6,
p=
3
4
,q=
15
2
,与p>1矛盾;
当-1≤p≤1时,ymax=y|t=p=p2+q+1=9,
再当p≥0,ymin=y|t=-1=-2p+q=6,得p=
3
-1,q=4+2
3

当p<0,ymin=y|t=1=2p+q=6,得p=-
3
+1,q=4+2
3

p=±(
3
-1),q=4+2
3
点评:本题主要考查同角三角函数的基本关系和一元二次函数的单调性以及最值的问题.考查考生的基础知识的综合运用能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=cos2x与y=sin(x+φ)在[0,
π2
]
上的单调性相同,则φ的一个值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中,真命题的个数为(  )
①若函数f(x)=sinx-cosx+1,则y=|f(x)|的周期为2π;
②若函数f(x)=cos4x-sin4x,则f′(
π
12
)=-1

③若角α的终边上一点P的坐标为(sin
6
,cos
6
)
,则角α的最小正值为
3

④函数y=2cos2x的图象可由函数y=cos2x+
3
sin2x
的图象向左平移
π
6
个单位得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义向量⊕运算:
a
b
=
c
,若
a
=(a1,a2),
b
=(b1,b2),则向量
c
=(a1b1,a2b2).已知
m
=(
1
2
,2
),
n
=(
π
6
,0
),且点P(x,y)在函数y=cos2x的图象上运动,点Q在函数y=f(x)的图象上运动,且点P和点Q满足:
OQ
=
m
OP
+
n
(其中O为坐标原点),则函数y=f(x)的最大值A及最小正周期T分别为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个命题,所有真命题的序号为
 

①从总体中抽取的样本(x1,y1),(x2,y2),L,(xn,yn),若记
.
x
=
1
n
i=1nxi
.
y
=
1
n
i=1nyi,则回归直线y=bx+a必过点(
.
x
.
y

②将函数y=cos2x的图象向右平移
π
3
个单位,得到函数y=sin(2x-
π
6
)
的图象;
③已知数列an,那么“对任意的n∈N*,点Pn(n,aa)都在直线y=2x+1上”是{an}为等差数列的“充分不必要条件”
④命题“若x≥2,则x≥2或x≤-2”的否命题是“若{x}≥2,则-2<x<2”

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个命题:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②若命题P:所有能被3整除的整数都是奇数,则P:存在能被3整除的数不是奇数;
③将函数y=sin(2x-
π
6
)的图象向右平移
π
6
个单位,所得图象对应的函数解析式为y=-cos2x;
④在一个2×2列联表中,由计算得K2=13,079,则其两个变量有关系的可能性是90%.
P(K2≥k0 0.15 0.10 0.05 0.025 0.01 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
其中所有正确的命题序号是
 

查看答案和解析>>

同步练习册答案