精英家教网 > 高中数学 > 题目详情
已知椭圆C的方程为,点A、B分别为其左、右顶点,点F1、F2分别为其左、右焦点,以点A为圆心,AF1为半径作圆A;以点B为圆心,OB为半径作圆B;若直线被圆A和圆B截得的弦长之比为
(1)求椭圆C的离心率;
(2)己知a=7,问是否存在点P,使得过P点有无数条直线被圆A和圆B截得的弦长之比为;若存在,请求出所有的P点坐标;若不存在,请说明理由.

【答案】分析:(1)根据直线l的斜率可知直线l的倾斜角,进而可求得点A到直线l的距离,进而表示出直线l被圆A截得的弦长和被圆B截得的弦长,利用弦长之比为,求得a和c的关系,进而求得e.
(2)假设存在,设P点坐标为(m,n),过P点的直线为L,当直线L的斜率不存在时,直线L不能被两圆同时所截,故可知直线L的斜率一定存在,进而可设直线方程,求得点A(-7,0)到直线L的距离,根据(1)的离心率求得圆A的半径,同样可求得圆B的半径,则可求得直线L被两圆截得的弦长,根据他们的比为建立等式,整理成关于k的一元二次方程,方程有无穷多解,进而求得m和n,则点P的坐标可得.
解答:解:(1)由,得直线l的倾斜角为150°,
则点A到直线l的距离
故直线l被圆A截得的弦长为
直线l被圆B截得的弦长为
据题意有:,即
化简得:16e2-32e+7=0,
解得:,又椭圆的离心率e∈(0,1);
故椭圆C的离心率为

(2)假设存在,设P点坐标为(m,n),过P点的直线为L;
当直线L的斜率不存在时,直线L不能被两圆同时所截;
故可设直线L的方程为y-n=k(x-m),
则点A(-7,0)到直线L的距离
由(1)有,得=
故直线L被圆A截得的弦长为
则点B(7,0)到直线L的距离,rB=7,
故直线L被圆B截得的弦长为
据题意有:,即有16(rA2-D12)=9(rB2-D22),整理得4D1=3D2
=
两边平方整理成关于k的一元二次方程得(7m2+350m+343)k2-(350m+14mn)k+7n2=0,
关于k的方程有无穷多解,
故有:
故所求点P坐标为(-1,0)或(-49,0).
点评:本题主要考查了椭圆的性质以及直线与椭圆、圆的关系的综合考查.考查了学生综合分析问题和基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a≥2b>0)

(1)求椭圆C的离心率的取值范围;
(2)若椭圆C与椭圆2x2+5y2=50有相同的焦点,且过点M(4,1),求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
a2
y2
b2
=1
(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆为椭圆C的“伴随圆”,椭圆C的短轴长为2,离心率为
6
3

(Ⅰ)求椭圆C及其“伴随圆”的方程;
(Ⅱ)若直线l与椭圆C交于A,B两点,与其“伴随圆”交于C,D两点,当|CD|=
13
 时,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知椭圆C的方程为:
x2
a2
+
y2
2
=1 (a>0)
,其焦点在x轴上,离心率e=
2
2

(1)求该椭圆的标准方程;
(2)设动点P(x0,y0)满足
OP
=
OM
+2
ON
,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为-
1
2
,求证:x02+2
y
2
0
为定值.
(3)在(2)的条件下,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•衡阳模拟)已知椭圆C的方程为
y2
a2
+
x2
b2
=1(a>b>0),离心率e=
2
2
,上焦点到直线y=
a2
c
的距离为
2
2
,直线l与y轴交于一点P(0,m),与椭圆C交于相异两点A,B且
AP
=t
PB

(1)求椭圆C的方程;
(2)若
OA
+t
OB
=4
OP
,求m的取值范围•

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x 2
4
+
y2
3
=1,过C的右焦点F的直线与C相交于A、B两点,向量
m
=(-1,-4),若向量
OA
-
OB
m
-
OF
共线,则直线AB的方程是(  )

查看答案和解析>>

同步练习册答案