精英家教网 > 高中数学 > 题目详情

函数是R上的奇函数,且在是减函数,,若,则m,n的大小关系是               

 

【答案】

m<n

【解析】函数是R上的奇函数,且在是减函数,根据奇函数的

对称性上的减函数,

 ,即m<n

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-x2
(1)求y=f(x)的解析式;
(2)画出函数y=f(x)的图象,并指出f(x)的单调区间及在每个区间上的增减性;
(3)若函数y=f(x)的定义域为[a,b],值域为[
1
b
,  
1
a
] (1≤a<b)
,求实数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,满足f(x-2)=-f(x).当x∈[-1,1]时,f(x)=x3,则下列四个命题:
①函数y=f(x)是以4为周期的周期函数;②当x∈[1,3]时,f(x)=(2-x)3
③函数y=f(x)的图象关于x=l对称; ④函数y=f(x)的图象关于点(3,0)对称.
其中正确的命题序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)是R上的奇函数,且当x>0时,f(x)=x2-2x-3,求f(x)的解析式.
(2)已知奇函数f(x)的定义域为[-3,3],且在区间[-3,0]内递增,求满足f(2m-1)+f(m2-2)<0的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ex+a)(a为常数)是R上的奇函数.
(1)求a的值;
(2)若函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数,求实数λ的取值范围;
(3)在(2)的条件下,若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省内江市高一(上)期末数学试卷(解析版) 题型:解答题

若函数是R上的奇函数
(1)求a的值,并利用定义证明函数f(x)在R上单调递增;
(2)解不等式:

查看答案和解析>>

同步练习册答案