精英家教网 > 高中数学 > 题目详情

二次函数f(x)=ax2+bx+c的图象的顶点为(4,0),且过点(0,2),则abc等于


  1. A.
    -6
  2. B.
    11
  3. C.
    -数学公式
  4. D.
    数学公式
C
分析:利用二次函数的图象顶点坐标和过点(0,2)代入二次函数的表达式,确定abc的值.
解答:∵二次函数的图象过(4,0),
∴16a+4b+c=0.①
又过点(0,2),∴c=2.②
由顶点坐标为(4,0)可知
x=-=4.③
由①②③可解得a=,b=-1,c=2,
∴abc=-
故选C.
点评:本题主要考查利用待定系数法求二次函数系数问题,要求熟练掌握二次函数的图象和性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=a(x+1)2+4-a,其中a为常数且0<a<3.取x1,x2满足:x1>x2,x1+x2=1-a,则f(x1)与f(x2)的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=a(x-m)(x-n)(m<n),若不等式f(x)>0的解集是(m,n)且不等式f(x)+2>0的解集是(α,β),则实数m、n、α、β的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源:2012年人教B版高中数学必修一2.4函数的零点练习卷(一)(解析版) 题型:解答题

已知二次函数f(x)=a+bx(a,b是常数且a0)满足条件:f(2)=0.方程f(x)=x有等根

(1)求f(x)的解析式;

(2)问:是否存在实数m,n使得f(x)定义域和值域分别为[m,n]和

[2m,2n],如存在,求出m,n的值;如不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二次函数f(x)=a(x+1)2+4-a,其中a为常数且0<a<3.取x1,x2满足:x1>x2,x1+x2=1-a,则f(x1)与f(x2)的大小关系为(  )
A.不确定,与x1,x2的取值有关
B.f(x1)>f(x2
C.f(x1)<f(x2
D.f(x1)=f(x2

查看答案和解析>>

科目:高中数学 来源:2006-2007学年广东省阳江市高二(上)期末数学试卷(理科)(解析版) 题型:选择题

已知二次函数f(x)=a(x-m)(x-n)(m<n),若不等式f(x)>0的解集是(m,n)且不等式f(x)+2>0的解集是(α,β),则实数m、n、α、β的大小关系是( )
A.m<α<β<n
B.α<m<n<β
C.m<α<n<β
D.α<m<β<n

查看答案和解析>>

同步练习册答案