精英家教网 > 高中数学 > 题目详情

已知椭圆)的右焦点,右顶点,右准线

(1)求椭圆的标准方程;

(2)动直线与椭圆有且只有一个交点,且与右准线相交于点,试探究在平面直角坐标系内是否存在点,使得以为直径的圆恒过定点?若存在,求出点坐标;若不存在,说明理由.

 

【答案】

(1);(2).

【解析】

试题分析:(1)利用椭圆的右准线方程为联立方程组求得,从而得出椭圆的方程;(2)联立方程组消去得到关于的一元二次方程,利用判别式,得出,由椭圆的对称性知,妨设点,利用推出,又联立程组可求得的值.

试题解析:(1)由题意,,由.

椭圆C的标准方程为.                                  5分

(2)由得:

,即

,,即.    8分

假设存在点满足题意,则由椭圆的对称性知,点应在轴上,不妨设点.

,若以为直径的圆恒过定点

+=恒成立,

.                                                             12分

存在点适合题意,点与右焦点重合,其坐标为(1,0).            13分

考点:椭圆的性质,直线与椭圆的关系,向量的数量积.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系xOy中,已知椭圆C:
y2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足
PA
AB
=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的

直线与椭圆相交M、N两点,且|MN|=1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足

)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的

直线与椭圆相交M、N两点,且|MN|=1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足

)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年贵州省高三第一次月考文科数学 题型:解答题

(本小题满分12分)已知椭圆的方程为 ,双曲线的左、右焦

 

点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点.

(1)求双曲线的方程;                                             

(2)若直线与双曲线C2恒有两个不同的交点A和B,求的范围。

 

查看答案和解析>>

同步练习册答案