【题目】设函数
.
(1)讨论
的单调性;
(2)若
有两个极值点
,
,求证:
.
【答案】(1)当
时,
在
上单调递减,在
上单调递增;
当
时,
在
上单调递减;
当
时,
在
,
上单调递减,在
上单调递增.
(2)见解析
【解析】
(1)求出
,令
,
,讨论
的取值,判断
的符号,从而可求出
的单调性.
(2)由(1)得
时,
有两个极值点
,设
,则有
且
,整理
,
,令
,
,利用导数研究函数
的单调性,可得
,进而可得证
解:(1)
,
令
,
,
①当
时,
在
上单调递减,
②当
时,
,由
得
,
,
当
时
,当
时,
,
∴
在
上单调递减,在
上单调递增,
③当
时,
,
,∴
在
上单调递减,
④当
时,
,由
得
,
当
或
时,
,
当
时,
,
∴
在
,
上单调递减,
在
上单调递增,
综上所述,
当
时,
在
上单调递减,
在
上单调递增;
当
时,
在
上单调递减;
当
时,
在
,
上单调递减,
在
上单调递增.
(2)由(1)得
时,
有两个极值点
,设
,
则有
且
,
∴![]()
![]()
![]()
,
,
令
,
,
,
令
,则
,
∵
,∴
,
,
,
∴当
时,
,∴
在区间
单调递增,
∴
,∴
在区间
单调递减,
∴
,
综上,
.
科目:高中数学 来源: 题型:
【题目】某电视台举行文艺比赛,并通过网络对比赛进行直播.比赛现场有5名专家评委给每位参赛选手评分,场外观众可以通过网络给每位参赛选手评分.每位选手的最终得分由专家评分和观众评分确定.某选手参与比赛后,现场专家评分情况如表;场外有数万名观众参与评分,将评分按照[7,8),[8,9),[9,10]分组,绘成频率分布直方图如图:
专家 | A | B | C | D | E |
评分 | 9.6 | 9.5 | 9.6 | 8.9 | 9.7 |
![]()
(1)求a的值,并用频率估计概率,估计某场外观众评分不小于9的概率;
(2)从5名专家中随机选取3人,X表示评分不小于9分的人数;从场外观众中随机选取3人,用频率估计概率,Y表示评分不小于9分的人数;试求E(X)与E(Y)的值;
(3)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分的平均数
作为该选手的最终得分,方案二:分别计算专家评分的平均数
和观众评分的平均数
,用
作为该选手最终得分.请直接写出
与
的大小关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
,以
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程和曲线
的直角坐标方程;
(2)设点
在曲线
上,直线
交曲线
于点
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,点
在抛物线
:
上,直线
:
与抛物线
交于
,
两点,且直线
,
的斜率之和为-1.
![]()
(1)求
和
的值;
(2)若
,设直线
与
轴交于
点,延长
与抛物线
交于点
,抛物线
在点
处的切线为
,记直线
,
与
轴围成的三角形面积为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系
中,直线
的参数方程为
(
为参数).以原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
,且直线
与曲线
交于
、
两点.
(1)求实数
的取值范围;
(2)若
,点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某快递公司收取快递费用的标准是:重量不超过
的包裹收费10元;重量超过
的包裹,除收费10元之外,超过
的部分,每超出
(不足
,按
计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).
![]()
(1)求这60天每天包裹数量的平均值和中位数;
(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.已知公司前台有工作人员3人,每人每天工资100元,以样本估计总体,试估计该公司每天的利润有多少元?
(3)小明打算将
四件礼物随机分成两个包裹寄出,且每个包裹重量都不超过
,求他支付的快递费为45元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在
中,
,
.已知
,
分别是
,
的中点.将
沿
折起,使
到
的位置且二面角
的大小是
.连接
,
,如图:
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)求平面
与平面
所成二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对
四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:
甲说:“是
或
作品获得一等奖”; 乙说:“
作品获得一等奖”;
丙说:“
两件作品未获得一等奖”; 丁说:“是
作品获得一等奖”.
评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于圆周率
,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计
的值:先请
名同学,每人随机写下一个都小于
的正实数对
,再统计两数能与
构成钝角三角形三边的数对
的个数
;最后再根据统计数m来估计
的值.假如统计结果是
那么可以估计
______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com