精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+2x+c(a≠0)的图象与y轴交于点(0,1),且满足f(-2+x)=f(-2-x)(x∈R)
(Ⅰ)求该二次函数的解析式及函数的零点.
(Ⅱ)已知函数在(t-1,+∞)上为增函数,求实数t的取值范围.
考点:二次函数的性质
专题:函数的性质及应用
分析:(I)利用二次函数f(x)=ax2+2x+c(a≠0)的图象与y轴交于点(0,1),可求c的值;根据函数f(x)满足f(-2+x)=f(-2-x)(x∈R),可求a的值,从而可得二次函数的解析式;由f(x)=0,可得函数的零点;
(II)根据函数在(t-1,+∞)上为增函数,且函数图象的对称轴为x=-2,可得t-1≥-2,从而可求实数t的取值范围.
解答: 解:(I)因为二次函数f(x)=ax2+2x+c(a≠0)的图象与y轴交于点(0,1),所以c=1               
又因为函数f(x)满足f(-2+x)=f(-2-x)(x∈R),所以x=-
2
2a
=-2
,所以a=
1
2

所以二次函数的解析式为:f(x)=
1
2
x2+2x+1
由f(x)=0,可得函数的零点为:-2+
2
,-2-
2

(II)因为函数在(t-1,+∞)上为增函数,且函数图象的对称轴为x=-2,
所以由二次函数的图象可知:t-1≥-2
∴t≥-1.
点评:本题考查二次函数解析式的确定,考查函数的零点,考查函数的单调性,确定函数的解析式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R的偶函数,对任意x∈R,都有f(x+2)=f(2-x)成立,且当x∈[-2,0]时,f(x)=(
1
2
)x
-1.若关于x0的方程f(x)-loga(x+2)=0在区间(0,6]内恰有两个不同的实数根,则实数a的取值范围为(  )
A、(0,1)
B、(1,2)
C、(1,
34
D、(
34
,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+tanx,项数为17的等差数列{an}满足an∈(-
π
2
π
2
),且公差d≠0.若f(a1)+f(a2)+…+f(a17)=0,则当k=
 
时,f(ak)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和是SnSn=-4n2+25n-1
(1)计算a1,a2,a3,判断{an}是否为等差数列?说明理由;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式1-4x2≥0的解集是(区间表示)
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C成等差数列,且满足条件sinAcosC=cos(120°-C)sinC,试判断△ABC的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A,B是全集U的两个子集,则A
?
B是CUB
?
CUA的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且满足2(Sn+1)=3an(n∈N+).
(1)求{an}的通项公式;
(2)设bn=
2n
an
,{bn}
的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△BCD中,AB=BC=1,∠ACB=120°,O为△ABC的外心,PO⊥平面ABC,且PO=
6
2

(I)求证:BO∥平面PAC;
(II)若点M为PC上,且PC⊥平面AMB,求二面角A-BM-O的正弦值.

查看答案和解析>>

同步练习册答案