精英家教网 > 高中数学 > 题目详情
17.已知数列{an}的各项都是正数,其前n项和Sn=$\frac{{{a}_{n}}^{2}+{a}_{n}}{2}$(n∈N*),数列{bn}满足bn=$\frac{121}{n+1}$(n∈N*),则当an+bn取最小值时n=10.

分析 求出{an}的通项公式,利用基本不等式求出an+bn的最小值及其条件.

解答 解:∵当n=1时,a1=$\frac{{{a}_{1}}^{2}+{a}_{1}}{2}$,∵a1>0,∴a1=1.
当n≥2时,an=Sn-Sn-1=$\frac{{{a}_{n}}^{2}-{{a}_{n-1}}^{2}+{a}_{n}-{a}_{n-1}}{2}$,∴an+an-1=(an+an-1)(an-an-1).
∵数列{an}的各项都是正数,∴an+an-1≠0,∴an-an-1=1.
∴{an}是以1为首项,以1为公差的等差数列.∴an=n.
∴an+bn=n+1+$\frac{121}{n+1}$-1≥2$\sqrt{121}$-1=21.当且仅当n+1=$\frac{121}{n+1}$即n=10时取等号.
故答案为10.

点评 本题考查了数列的递推公式,基本不等式,等差数列的通项公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点.
求:(1)点C到面BC1D的距离;
(2)D1E与平面BC1D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC的内角A,B,C的对边a,b,c满足a2+ac=b2
(Ⅰ)求A的取值范围;
(Ⅱ)若a=2,A=$\frac{π}{6}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}的前n项和Sn=$\frac{3}{2}$(3n-1),则数列{$\frac{1}{(lo{g}_{3}{a}_{n+1})(lo{g}_{3}{a}_{n+2})}$}的前10项和为(  )
A.$\frac{5}{6}$B.$\frac{11}{12}$C.$\frac{10}{11}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设点P分有向线段$\overrightarrow{{P}_{1}{P}_{2}}$的比是λ,且点P在有向线段$\overrightarrow{{P}_{1}{P}_{2}}$的延长线上,则λ的取值范围是(  )
A.(-∞,-1)B.(-1,0)C.(-∞,0)D.(-∞,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和Sn满足:2Sn=3an+n-2.
(1)求数列{an}的通项公式;
(2)设bn=log3(2an+1-1),Tn为数列{bn}的前n项和,令Mn=$\frac{1}{{T}_{1}}$+$\frac{1}{{T}_{2}}$+…+$\frac{1}{{T}_{n}}$是否存在最大的正整数m,使Mn≥$\frac{m}{4}$都成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)=sin(ωx+$\frac{π}{4}$)(ω>0),若f($\frac{π}{2}$)=f(π),且在区间($\frac{π}{2}$,π)内,f(x)≤f($\frac{π}{2}$),则ω=(  )
A.$\frac{1}{3}$B.$\frac{5}{3}$C.$\frac{1+8k}{3}$,k∈ND.$\frac{5+8k}{3}$,k∈N

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数列1,$\frac{1}{2}$,$\frac{1}{{2}^{2}}$,…,$\frac{1}{{2}^{n}}$,则各项和等于(  )
A.2-$\frac{1}{{2}^{n}}$B.1-$\frac{1}{{2}^{n}}$C.1-$\frac{1}{{2}^{n+1}}$D.$\frac{1}{{2}^{n}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A、B、C的对边分别为a、b、c,且$\frac{c-4a}{b}$=$\frac{cos(A+B)}{cosB}$.
(1)求cosB的值;
(2)若△ABC的面积为$\sqrt{15}$,且a=c+2,求b的大小.

查看答案和解析>>

同步练习册答案