精英家教网 > 高中数学 > 题目详情
7.已知a>0且a≠1,函数f(x)=$\left\{\begin{array}{l}sin(\frac{π}{2}x)-1,\;x<0\\{log_a}x,\;\;x>0\end{array}$.若f(x)的图象上关于y轴对称的点至少有3对,则实数a的取值范围是(0,$\frac{\sqrt{5}}{5}$).

分析 求出函数f(x)=sin($\frac{π}{2}$x)-1,(x<0)关于y轴对称的解析式,利用数形结合即可得到结论.

解答 解:若x>0,则-x<0,
∵x<0时,f(x)=sin($\frac{π}{2}$x)-1,
∴f(-x)=sin(-$\frac{π}{2}$x)-1=-sin($\frac{π}{2}$x)-1,
则若f(x)=sin($\frac{π}{2}$x)-1,(x<0)关于y轴对称,
则f(-x)=-sin($\frac{π}{2}$x)-1=f(x),
即y=-sin($\frac{π}{2}$x)-1,x>0,
设g(x)=-sin($\frac{π}{2}$x)-1,x>0
作出函数g(x)的图象,
要使y=-sin($\frac{π}{2}$x)-1,x>0与f(x)=logax,x>0的图象至少有3个交点,
则0<a<1且满足g(5)<f(5),
即-2<loga5,
即loga5>logaa-2
则5<$\frac{1}{{a}^{2}}$,
解得0<a<$\frac{\sqrt{5}}{5}$,
故答案为:(0,$\frac{\sqrt{5}}{5}$).

点评 本题主要考查分段函数的应用,作出函数关于y轴对称的图象,利用数形结合的思想是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知向量$\overrightarrow a=(1,3)$,其起点坐标为(-1,5),则它的终点的坐标为(0,8).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设{an}(n∈N*)是等差数列,且a5=10,a10=20.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设Sn为数列{an}的前n项和,求数列$\{\frac{1}{S_n}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C所对的边分别是a,b,c,若tanA=$\frac{sinC}{1-cosC}$;
(1)求$\frac{b}{a}$;
(2)若△ABC的面积为$\frac{\sqrt{3}}{6}$,c=$\sqrt{2}$,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.计算:
(1)($\frac{8}{27}$)${\;}^{\frac{2}{3}}$+($\frac{3}{2}$)${\;}^{-\frac{1}{3}}$×(-$\frac{3}{5}$)0-$\sqrt{(\frac{2}{3})^{\frac{2}{3}}}$-$\frac{4}{9}$
(2)lg25-lg22+2lg2+3${\;}^{lo{g}_{3}2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义在R上的偶函数f(x)满足f(x+4)=f(x),当x∈[0,2],f(x)=3x,则f(-9)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知正方体ABCD-A1B1C1D1
(1)求证:D1C∥平面A1BD.
(2)求异面直线A1D与D1C所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\left\{\begin{array}{l}{-x-1(x<-2)}\\{x+3(-2≤x≤\frac{1}{2})}\\{5x+1(x>\frac{1}{2})}\end{array}\right.$
(1)画出函数的图象并由图象观察函数f(x)的最小值;
(2)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数$f(x)={(\frac{1}{3})^{\sqrt{1-{x^2}}}}$的单调增区间是[0,1],值域为$[{\frac{1}{3},1}]$.

查看答案和解析>>

同步练习册答案