精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=n2-48n
(Ⅰ)求数列的通项公式an
(Ⅱ)数列{an}是等差数列吗?如不是,请说明理由;如是,请给出证明,并求出该等差数列的首项与公差.
(Ⅰ)当n≥2时,an=Sn-Sn-1=n2-48n-(n-1)2+48(n-1)=2n-49,
当n=1时,a1=S1=1-48=-47满足an,∴an=2n-49.
(Ⅱ)∵an=2n-49.
∴当n≥2时,an-an-1=2n-49-[2(n-1)-49]=2为常数,
∴数列{an}是等差数列,其中公差d=2,首项a1=S1=-47.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设数列的前项和为
(Ⅰ)求(Ⅱ)证明:是等比数列;(Ⅲ)求的通项公式

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设Sn是等差数列{an}的前n项和,若
S3
S6
=
1
3
,则
S6
S12
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等差数列{an}的前n项和Sn能取到最大值,且满足:a9+3a11<0,a10•a11<0,对于以下几个结论:
①数列{an}是递减数列;
②数列{Sn}是递减数列;
③数列{Sn}的最大项是S10
④数列{Sn}的最小的正数是S19
其中正确的结论的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知等差数列{an},sn为其前n项和,且s10=S20,则S30=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等差数列{an}中,a6=5,则数列{an}的前11项和S11等于(  )
A.22B.33C.44D.55

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.
(1)求数列{an}的通项公式及前n项和公式;
(2)设数列{bn}的通项公式为bn=
an
an+t
,问:是否存在正整数t,使得b1,b2,bm(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.
(1)求证:{lgan}是等差数列;
(2)设Tn是数列{
3
(lgan)(lgan+1)
}的前n项和,求使Tn
1
4
(m2-5m)
对所有的n∈N*都成立的最大正整数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=px2+qx,其中p>0,p+q>1,对于数列{an},设它的前n项和为Sn,且满足Sn=f(n)(n∈N*).
(1)求数列{an}的通项公式,并证明an+1>an>1(n∈N*);
(2)求证:点M1(1,
S1
1
),M2(2,
S2
2
),M3(3,
S3
3
),…,Mn(n,
Sn
n
)
在同一直线l1上;
(3)若过点N1(1,a1),N2(2,a2)作直线l2,设l2与l1的夹角为θ,求tanθ的最大值.

查看答案和解析>>

同步练习册答案