【题目】已知正三角形ABC的边长为2,AM是边BC上的高,沿AM将△ABM折起,使得二面角B﹣AM﹣C的大小为90°,此时点M到平面ABC的距离为 .
科目:高中数学 来源: 题型:
【题目】已知向量
=(1,2),
=(cosα,sinα),设
=
+t
(t为实数).
(1)若
,求当|
|取最小值时实数t的值;
(2)若
⊥
,问:是否存在实数t,使得向量
﹣
和向量
的夹角为
,若存在,请求出t;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:
、
、
是同一平面上的三个向量,其中
=(1,2).
(1)若|
|=2
,且
∥
,求
的坐标.
(2)若|
|=
,且
+2
与2
﹣
垂直,求
与
的夹角θ
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|<
在某一个周期的图象时,列表并填入了部分数据,如表:
ωx+φ | 0 |
| π |
| 2π |
x | x1 |
| x2 |
| x3 |
Asin(ωx+φ)+B | 0 |
| 0 | ﹣ | 0 |
(1)请求出上表中的x1 , x2 , x3 , 并直接写出函数f(x)的解析式;
(2)若3sin2
﹣
mf(
﹣
)≥m+2对任意x∈[0,2π]恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
=(cosx,﹣1),
=(
sinx,cos2x),设函数f(x)=
+
.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈(0,
)时,求函数f(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的公比q>1,且a1+a3=20,a2=8. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设
,Sn是数列{bn}的前n项和,对任意正整数n不等式
恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com