精英家教网 > 高中数学 > 题目详情
函数y=ax-2的零点有(  )
分析:函数y=ax-2的零点即方程ax-2=0的根,根据指数的运算性质,求出方程的根即可得答案.
解答:解:函数y=ax-2的零点即方程ax-2=0的根,
∴ax-2=0,即ax=2,
ax=aloga2
∴x=loga2,故方程的根只有1个,即函数y=ax-2的零点有1个,
故选不.
点评:本题考查了函数的零点,函数的零点即对应函数图象与x轴交点的横坐标也是对应方程的根,注意零点是一个实数,而不是一个点.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有以下五个命题
①设a>0,f(x)=ax2+bx+c,曲线y=f(x)在点P(x0,f(x0))处切线的倾斜角的取值范围为[0,
π
4
],则点P到曲线y=f(x)对称轴距离的取值范围为[0,
1
2a
];
②一质点沿直线运动,如果由始点起经过t称后的位移为s=
1
3
t3-
3
2
t2+2t
,那么速度为零的时刻只有1秒末;
③若函数f(x)=loga(x3-ax)(a>0,且a≠1)在区间(-
1
2
,0)
内单调递增,则a的取值范围是[
3
4
,1)

④定义在R上的偶函数f(x),满足f(x+1)=-f(x),则f(x)的图象关于x=1对称;
⑤函数y=f(x-2)和y=f(2-x)的图象关于直线x=2对称.其中正确的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.
(1)试判断函数f(x)=log
12
(x-1)
是否为(3,+∞)上的周期为1的2级类增周期函数?并说明理由;
(2)已知函数f(x)=-x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;
(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.
(Ⅰ)已知T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围.
(Ⅱ)已知当x∈[0,4]时,函数f(x)=x2-4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.
(1)已知函数f(x)=-x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;
(2)已知 T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;
(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.
(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2-4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;
(Ⅱ)是否存在实数k,使函数f(x)=coskx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,使得对任意x∈R,有f(x+T)=Tf(x)成立.
(1)函数f(x)=x是否属于M?说明理由;
(2)若函数f(x)=ax(a>0且a≠1)的图象与函数y=x的图象有公共点,求证:f(x)=ax∈M;
(3)设f(x)∈M,且T=2,已知当1<x<2时,f(x)=x+lnx,求当-3<x<-2时,f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面给出五个事件:

(1)某地2月3日下雪;(2)函数y=ax(a>0且a≠1)在定义域上是增函数;(3)实数的绝对值不小于零;(4)在标准大气压下,水在1℃结冰;(5)a、b∈R,则ab=ba.其中必然事件是____________;不可能事件是________________;随机事件是________________.

查看答案和解析>>

同步练习册答案