精英家教网 > 高中数学 > 题目详情
设向量
a
=(
3
sinx,sinx)
b
=(cosx,sinx)
x∈[0,
π
2
]

(1)若|
a
|=|
b
|
,求x的值;
(2)设函数f(x)=
a
b
,求f(x)的最大值.
(1)由题意可得
a
2
=(
3
sinx)
2
+sin2x=4sin2x,
b
2
=cos2x+sin2x=1,
|
a
|=|
b
|
,可得 4sin2x=1,即sin2x=
1
4

∵x∈[0,
π
2
],∴sinx=
1
2
,即x=
π
6

(2)∵函数f(x)=
a
b
=(
3
sinx,sinx)•(cosx,sinx)=
3
sinxcosx+sin2x=
3
2
sin2x+
1-cos2x
2
=sin(2x-
π
6
)+
1
2

 x∈[0,
π
2
],∴2x-
π
6
∈[-
π
6
6
],
∴当2x-
π
6
=
π
2
,sin(2x-
π
6
)+
1
2
取得最大值为 1+
1
2
=
3
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(
3
sinωx,cosωx)
b
=(cosωx,-cosωx),ω>0,记函数f(x)=
a
b
,已知f(x)的最小正周期为
π
2

(1)求ω的值;
(2)设△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,求此时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(cos(α+β),sin(α-β)),
b
=(cos(α-β),sin(α+β)),且
a
+
b
=(
4
5
3
5
)

(1)求tanα;
(2)求
2cos2
α
2
-3sinα-1
2
sin(α+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)设向量
a
=(
3
sinθ+cosθ+1,1),
b
=(1,1),θ∈[
π
3
3
],m是向量
a
 在向量
b
向上的投影,则m的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(1,sinθ)
b
=(3sinθ,1)
,且
a
b
,则cos2θ=
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设平面向量
a
=(
3
sin(π+x),2cosx)
b
=(-2cosx,cosx),已知函数f(x)=
a
b
+m在[0,
π
2
]
上的最大值为6.
(Ⅰ)求实数m的值;
(Ⅱ)若f(x0)=
26
5
x0∈[
π
4
π
2
]
.求cos2x0的值.

查看答案和解析>>

同步练习册答案