精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x﹣1|
(Ⅰ)解不等式f(2x)+f(x+4)≥8;
(Ⅱ)若|a|<1,|b|<1,a≠0,求证:

【答案】(Ⅰ)解:f(2x)+f(x+4)=|2x﹣1|+|x+3|=

当x<﹣3时,由﹣3x﹣2≥8,解得x≤﹣

当﹣3 时,由﹣x+4≥8,解得x∈

当x≥ 时,由3x+2≥8,解得x≥2

所以,不等式f(2x)+f(x+4)≥8的解集为{x|x≤﹣ 或x≥2}

(Ⅱ)证明: 等价于f(ab)>|a|f( ),即|ab﹣1|>|a﹣b|,

因为|a|<1,|b|<1,

所以|ab﹣1|2﹣|a﹣b|2=(a2b2﹣2ab+1)﹣(a2﹣2ab+b2)=(a2﹣1)(b2﹣1)>0,

所以,|ab﹣1|>|a﹣b|,故所证不等式成立


【解析】(Ⅰ)依题意,f(2x)+f(x+4)=|2x﹣1|+|x+3|= ,利用分段函数分段解不等式f(2x)+f(x+4)≥8,即可求得其解集.(Ⅱ)|a|<1,|b|<1, f(ab)>|a|f( |ab﹣1|>|a﹣b|,要证该不等式成立,只需证明|ab﹣1|2﹣|a﹣b|2>0即可.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若x1 , x2 , …,x2017的平均数为4,标准差为3,且yi=﹣3(xi﹣2),i=x1 , x2 , …,x2017 , 则新数据y1 , y2 , …,y2017的平均数和标准差分别为(
A.﹣6 9
B.﹣6 27
C.﹣12 9
D.﹣12 27

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆 的离心率为 ,直线y=x被椭圆C截得的线段长为
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线与椭圆C交于两点(A,B不是椭圆C的顶点),点D在椭圆C上,且AD⊥AB,直线BD与x轴、y轴分别交于M,N两点.设直线BD,AM斜率分别为k1 , k2 , 证明存在常数λ使得k1=λk2 , 并求出λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c∈R,a2+b2+c2=1.
(Ⅰ)求证:|a+b+c|≤
(Ⅱ)若不等式|x﹣1|+|x+1|≥(a+b+c)2对一切实数a,b,c恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(°C)与该小卖部的这种饮料销量y(杯),得到如下数据:

1月11日

1月12日

1月13日

1月14日

1月15日

平均气温x(°C)

9

10

12

11

8

销量y(杯)

23

25

30

26

21

(Ⅰ)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;
(Ⅱ)请根据所给五组数据,求出y关于x的线性回归方程 = x+
(Ⅲ)根据(Ⅱ)中所得的线性回归方程,若天气预报1月16日的白天平均气温7(°C),请预测该奶茶店这种饮料的销量.
(参考公式: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.

(1)求椭圆的方程;

(2)已知定点,是否存在过的直线,使与椭圆交于两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A,B,C的对边分别是a,b,c,则: ①若cosBcosC>sinBsinC,则△ABC一定是钝角三角形;
②若acosA=bcosB,则△ABC为等腰三角形;
,若 ,则△ABC为锐角三角形;
④若O为△ABC的外心,
⑤若sin2A+sin2B=sin2C,
以上叙述正确的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C: + =1(a>b>0),定义椭圆的“伴随圆”方程为x2+y2=a2+b2;若抛物线x2=4y的焦点与椭圆C的一个短轴重合,且椭圆C的离心率为
(1)求椭圆C的方程和“伴随圆”E的方程;
(2)过“伴随圆”E上任意一点P作椭圆C的两条切线PA,PB,A,B为切点,延长PA与“伴随圆”E交于点Q,O为坐标原点.
①证明:PA⊥PB;
②若直线OP,OQ的斜率存在,设其分别为k1 , k2 , 试判断k1k2是否为定值,若是,求出该值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长郡中学早上8点开始上课,若学生小典与小方匀在早上7:40至8:00之间到校,且两人在该时间段的任何时刻到校都是等可能的,则小典比小方至少早5分钟到校的概率为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案