精英家教网 > 高中数学 > 题目详情
如图,半圆O的直径为2,A为直径延长线上的一点,OA=2,B为半圆上任意一点,以AB为一边作等边三角形ABC.问:点B在什么位置时,四边形OACB面积最大?
点B在使∠AOB=的位置时,四边形OACB面积最大

试题分析:在中,由已知OA=2,OB=1,设∠AOB=,则可应用余弦定理将AB的长用的三角函数表示出来,进而四边形OACB面积S=S△AOB+S△AB表示成为的三角函数,再注意将三角函数化简成为的形式,就可求得使四边形OACB面积最大的角的值,从而就可确定点B的位置.
试题解析:设∠AOB=α,                      .1分
在△AOB中,由余弦定理得
AB2=OA2+OB2-2×OA×OBcos∠AOB
=12+22-2×1×2×cosα
=5-4cosα,                      .4分
于是,四边形OACB的面积为
S=S△AOB+S△ABCOA·OBsinα+AB2               6分
×2×1×sinα+(5-4cosα)
=sinα-cosα+
=2sin.                   .10分
因为0<α<π,所以当α-,α=
即∠AOB=时,四边形OACB面积最大12分          12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
先解答(1),再通过结构类比解答(2):
(1)请用tanx表示,并写出函数的最小正周期;
(2)设为非零常数,且,试问是周期函数吗?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数其中中,分别是角的对边,且
(1)求角A;
(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,已知a=4
3
,b=4,∠A=60°,则角B的度数为(  )
A.30°或150°B.30°C.60°D.150°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=cos(2x+
π
3
)+sin2x
(1)求函数f(x)的单调递减区间及最小正周期;
(2)设锐角△ABC的三内角A,B,C的对边分别是a,b,c,若c=
6
,cosB=
1
3
,f(
C
2
)=-
1
4
,求b.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,角A,B,C所对的边分别为a,b,c, cosC+(cosA-sinA)cosB=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平行四边形ABCD中,对角线AC=,BD=,周长为18,则这个平行四边形的面积为(  )
A.16B.C.18D.32

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

E,F是等腰直角斜边AB上的三等分点,则tanECF=(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

计算:      

查看答案和解析>>

同步练习册答案