精英家教网 > 高中数学 > 题目详情

(08年临沂市质检一文)(14分)已知函数(其中a>0),且在点(0,0)处的切线与直线平行。

   (1)求c的值;

   (2)设的两个极值点,且的取值范围;

   (3)在(2)的条件下,求b的最大值。

解析:(1)

处的切线与直线平行,

…………………………3分

(2)

的两个极值点,

的两个实根。……………………5分

……………………6分

……………………8分

∴0<a≤1……………………9分

(3)令…………10分

列表如下:

a

1

+

0

 

极大值

0

 

可知,当取得最大值……………………13分

即b的最大值为…………………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年西安市第一中学五模理)(12分) 已知长度为的线段的两端点在抛物线上移动,求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年江苏百校样本分析)(10分)挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”――目测、初检、复检、文考、政审等. 某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员. 根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.

(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;

(2)设通过最后三关后,能被录取的人数为,求随机变量的期望

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年周至二中三模理) 已知等差数列{an}的公差为2,若a1a3a4成等比数列,则a2等于         (    )

(A)-4   (B)-6     (C)-8     (D)-10

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年潍坊市六模) (12分)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年滨州市质检三文)(12分)已知函数.

   (I)当m>0时,求函数的单调递增区间;

   (II)是否存在小于零的实数m,使得对任意的,都有,若存在,求m的范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案