精英家教网 > 高中数学 > 题目详情
20.已知集合A={x|$\frac{2x-1}{x-2}>1$},B={x|-3<x<4,x∈Z},则A∩B=(  )
A.{-2,-1,0,1,2,3}B.{-2,-1,0,1,3}C.{-2,3}D.{3}

分析 利用交集定义求解.

解答 解:由$\frac{2x-1}{x-2}>1$,得到$\frac{x+1}{x-2}$>0,即(x+1)(x-2)>0,解得x<-1,或x>2,
∴A=(-∞,-1)∪(2,+∞),
∵B={x|-3<x<4,x∈Z}={-2,-1,0,1,2,3},
∴A∩B={-2,3}.
故选:C.

点评 本题考查交集的求法,是基础题,解题时要认真审题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.定义在R上的奇函数f(x),当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{3}}(x+1),x∈[0,2)}\\{1-|x-4|,x∈[2,+∞)}\end{array}\right.$,则关于x的函数F(x)=f(x)-a(0<a<1)的所有零点个数为(  )
A.4B.3C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.当x→0时,下列4个无穷小量中比其它3个更高阶的无穷小量是(  )
A.1n(1+x)B.ex-1C.tanx-sinxD.1-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}的前n项和为Sn,且满足a1=2,S3=12.
( I) 求数列{an}的通项公式;
( II)若a3,ak+1,Sk成等比数列,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.定义在R上的函数f(x)对?x,y∈R都有f(x+y)=f(x)+f(y)且x>0时,恒有f(x)<0.
(1)证明f(x)是奇函数;
(2)证明f(x)是减函数;
(3)若f(3x•k)+f(3x-9x-2)>0对?x∈R恒成立,求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)的图象如图所示,则f(x)的解析式可能是(  )
A.x2cosxB.sinx2C.xsinxD.x2-$\frac{1}{6}$x4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=|$\frac{x}{1+x}$|,当f(x)的定义域为(m,+∞)时,值域恰为[0,1),则实数m的取值范围是(-$\frac{1}{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知双曲线过点P(3,-$\sqrt{2}$),离心率e=$\frac{\sqrt{5}}{2}$,试求此双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知{$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$}为空间的一个基底,且$\overrightarrow{OA}$=$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{3}}$,$\overrightarrow{OB}$=-3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$+2$\overrightarrow{{e}_{3}}$,$\overrightarrow{OC}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{3}}$,能否以{$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$}作为空间的一组基底?

查看答案和解析>>

同步练习册答案