精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=ln x-$\frac{1}{2}$ax2-x,若x=1是f(x)的极值点,则a的值为(  )
A.0B.1C.2D.3

分析 求出函数的导数,利用函数的极值点,列出方程求解即可.

解答 解:函数f(x)=ln x-$\frac{1}{2}$ax2-x,的定义域为:x>0,
函数的导数为:y′=$\frac{1}{x}-ax-1$,
x=1是f(x)的极值点,
可得1-a-1=0,解得a=0.
经检验可知a=0时,x=1是f(x)的极值点,
故选:A.

点评 本题考查函数的极值的求法,导数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知定义在实数集R上的函数f(x)满足下列三个条件
①对任意的x∈R,都有f(x+4)=f(x).
②对于任意的x1,x2∈[0,2],x1<x2,都有f(x1)<f(x2).
③函数f(x+2)的图象关于y轴对称.则下列结论中,正确的是(  )
A.f(4.5)<f(6.5)<f(7)B.f(4.5)<f(7)<f(6.5)C.f(7)<f(6.5)<f(4.5)D.f(7)<f(4.5)<f(6.5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若函数f(x)在闭区间[-1,2]上的图象如图所示,则此函数的解析式为y=$\left\{\begin{array}{l}{x+1,-1≤x<0}\\{-\frac{1}{2}x,0≤x≤2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:
(1)$\root{4}{{(3-π{)^4}}}$+(0.008)${\;}^{\frac{1}{3}}$-(0.25)${\;}^{\frac{1}{2}}$×($\frac{1}{{\sqrt{2}}}$)-4
(2)($\root{3}{2}$×$\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-4($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25-(-2009)0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设计一个程序,求一个数x的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设角α的终边经过点P(sin2,cos2),则$\sqrt{2(1-sinα)}$的值等于(  )
A.sin1B.cos1C.2sin1D.2cos1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对于使不等式f(x)≤M成立的所有常数M中,我们把M的最小值叫做函数f(x)的上确界.若a,b∈R+,a+b=1,则$-\frac{1}{2a}-\frac{2}{b}$的上确界为(  )
A.$-\frac{9}{2}$B.$\frac{9}{2}$C.$\frac{1}{4}$D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,三棱锥S-ABC,E,F分别在线段AB,AC上,EF∥BC,△ABC,△SEF均是等边三角形,且平面SEF⊥平面ABC,若BC=4,EF=a,O为EF的中点.
(1)求证:BC⊥SA.
(2)a为何值时,BE⊥平面SCO.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知点A(-2,-1),B(2,1),直线AM,BM相交于点M,且它们的斜率之积为-$\frac{1}{2}$,点M的轨迹为曲线H.
(1)求曲线H的方程;
(2)过点P(-2,1)作斜率为k1,k2的两条直线l1,l2分别与曲线H交于C,D两点,且C,D关于原点对称,设点Q(-2,0)到直线l1,l2的距离分别为d1,d2且d1>d2,求k1的取值范围.

查看答案和解析>>

同步练习册答案