精英家教网 > 高中数学 > 题目详情
如图,给定由6个点(任意相邻两点距离为1)组成的正三角形点阵,在其中任意取2个点,则两点间的距离为2的概率是( )

A.
B.
C.
D.
【答案】分析:从6个点中选出2个的选法共有=15种,若使得取出的两点中距离为2,则只能是三角形的顶点中任意取出2个,只有3种情况,代入古典概率的求解公式即可求解
解答:解:从6个点中选出2个的选法共有=15种
若使得取出的两点中距离为2,则只能是三角形的顶点中任意取出2个,只有3种情况
P==
故选B
点评:本题主要考查了古典概率的计算公式的应用,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•嘉兴一模)如图,给定由6个点(任意相邻两点距离为1)组成的正三角形点阵,在其中任意取2个点,则两点间的距离为2的概率是(  )

查看答案和解析>>

科目:高中数学 来源:嘉兴一模 题型:单选题

如图,给定由6个点(任意相邻两点距离为1)组成的正三角形点阵,在其中任意取2个点,则两点间的距离为2的概率是(  )
A.
1
10
B.
1
5
C.
3
10
D.
2
5
精英家教网

查看答案和解析>>

同步练习册答案