精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)若曲线在点处的切线与直线平行,求出这条切线的方程;
(Ⅱ)若,讨论函数的单调区间;
(Ⅲ)对任意的,恒有,求实数的取值范围.

(1)
(2)若,则,可知函数的增区间为,减区间为                                  
,则,可知函数的增区间为
,则,可知函数的增区间为,减区间为
(3)

解析试题分析:解:(Ⅰ),得切线斜率为               2分
据题设,,所以,故有                             3分
所以切线方程为                          4分
(Ⅱ) 
,则,可知函数的增区间为,减区间为                                   8分
,则,可知函数的增区间为
,则,可知函数的增区间为,减区间为  10分
(Ⅲ)当时,据(Ⅱ)知函数在区间上递增,在区间上递减,所以,当时,,故只需

显然,变形为,即,解得               12分
时,据(Ⅱ)知函数在区间上递增,则有
只需,解得.
综上,正实数的取值范围是                         14
考点:导数的运用
点评:考查了导数在研究函数中的运用,求解切线方程以及函数单调性,以及函数的最值,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数
(1)若,求曲线处的切线方程;
(2)若恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.()
(1)当时,试确定函数在其定义域内的单调性;
(2)求函数上的最小值;
(3)试证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线 y = x3 + x-2 在点 P0 处的切线  与直线4x-y-1=0平行,且点 P0 在第三象限,
(1)求P0的坐标;
(2)若直线  , 且 l 也过切点P0 ,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

题文已知函数.
(1)求函数的单调递减区间;
(2)若不等式对一切恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

理科(本小题14分)已知函数,当时,函数取得极大值.
(Ⅰ)求实数的值;(Ⅱ)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有;(Ⅲ)已知正数满足求证:当时,对任意大于,且互不相等的实数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数其中
(1)若=0,求的单调区间;
(2)设表示两个数中的最大值,求证:当0≤x≤1时,||≤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且处取得极值.
(1)求函数的解析式.
(2)设函数,是否存在实数,使得曲线轴有两个交点,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中
(1)若有极值,求的取值范围;
(2)若当恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案