精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,点E在AD上,且AE=2ED.
(Ⅰ)已知点F在BC上,且CF=2FB,求证:平面PEF⊥平面PAC;
(Ⅱ)当二面角A﹣PB﹣E的余弦值为多少时,直线PC与平面PAB所成的角为45°?

【答案】(Ⅰ)证明:∵AB⊥AC,AB=AC,∴∠ACB=45°,

∵底面ABCD是直角梯形,∠ADC=90°,AD∥BC,

∴∠ACD=45°,即AD=CD,

∵AE=2ED,CF=2FB,∴

∴四边形ABFE是平行四边形,则AB∥EF,

∴AC⊥EF,

∵PA⊥底面ABCD,∴PA⊥EF,

∵PA∩AC=A,

∴EF⊥平面PAC,∵EF平面PEF,

∴平面PEF⊥平面PAC.

(Ⅱ)解:∵PA⊥AC,AC⊥AB,

∴AC⊥平面PAB,

则∠APC为直线PC与平面PAB所成的角,

若PC与平面PAB所成夹角为45°,则 ,即

取BC的中点为G,连接AG,则AG⊥BC,以A为坐标原点建立如图所示的空间直角坐标系A﹣xyz,

则B(1,﹣1,0),C(1,1,0),

设平面PBE的法向量 ,则

令y=3,则x=5, ,∴

是平面PAB的一个法向量,

即当二面角A﹣PB﹣E的余弦值为 时,直线PC与平面PAB所成的角为45°.


【解析】(Ⅰ)推导出∠ACB=45°,从而∠ACD=45°,进而四边形ABFE是平行四边形,推导出AC⊥EF,PA⊥EF,从而EF⊥平面PAC,由此能证明平面PEF⊥平面PAC.(Ⅱ)由PA⊥AC,AC⊥AB,知AC⊥平面PAB,则∠APC为直线PC与平面PAB所成的角,取BC的中点为G,连接AG,则AG⊥BC,以A为坐标原点,建立空间直角坐标系A﹣xyz,利用向量法能求出直线PC与平面PAB所成的角.
【考点精析】解答此题的关键在于理解平面与平面垂直的判定的相关知识,掌握一个平面过另一个平面的垂线,则这两个平面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=(
A.﹣
B.﹣
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .
(1)若函数 的图象在点 处的切线平行于直线 ,求 的值;
(2)讨论函数 在定义域上的单调性;
(3)若函数 上的最小值为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=2lnx+x2﹣ax. (Ⅰ)当a=5时,求f(x)的单调区间;
(Ⅱ)设A(x1 , y1),B(x2 , y2)是曲线y=f(x)图象上的两个相异的点,若直线AB的斜率k>1恒成立,求实数a的取值范围;
(Ⅲ)设函数f(x)有两个极值点x1 , x2 , x1<x2且x2>e,若f(x1)﹣f(x2)≥m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若曲线f(x)= (e﹣1<x<e2﹣1)和g(x)=﹣x3+x2(x<0)上分别存在点A、B,使得△OAB是以原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,则实数a的取值范围是(
A.(e,e2
B.(e,
C.(1,e2
D.[1,e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆M恒过点(0,1),且与直线y=﹣1相切.
(1)求圆心M的轨迹方程;
(2)动直线l过点P(0,﹣2),且与点M的轨迹交于A、B两点,点C与点B关于y轴对称,求证:直线AC恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知圆C1的参数方程为 为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为ρcosθ+2=0.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2)若直线C3的极坐标方程为 ,设C3与C1的交点为M,N,P为C2上的一点,且△PMN的面积等于1,求P点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的直角顶点A在y轴上,点B(1,0),D为斜边BC的中点,且AD平行于x轴.
(1)求点C的轨迹方程;
(2)设点C的轨迹为曲线Γ,直线BC与Γ的另一个交点为E,以CE为直径的圆交y轴于点M,N,记圆心为P,∠MPN=α,求α的最大值.

查看答案和解析>>

同步练习册答案