精英家教网 > 高中数学 > 题目详情
14.已知实数x、y满足$\left\{\begin{array}{l}x-y+2≥0\\ x+y≥0\\ 4x-y-1≤0\end{array}\right.$,则z=2x+y的最大值为(  )
A.-1B.$\frac{6}{5}$C.5D.6

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}x-y+2≥0\\ x+y≥0\\ 4x-y-1≤0\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x-y+2=0}\\{4x-y-1=0}\end{array}\right.$,解得A(1,3),
化目标函数z=2x+y,得y=-2x+z,
由图可知,当直线y=-2x+z过点A(1,3)时,直线在y轴上的截距最大,z有最大值为5.
故选:C.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.用一个平面去截一个四棱锥,截面形状不可能的是(  )
A.四边形B.三角形C.五边形D.六边形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知y=a-bcos3x(b>0)的最大值为$\frac{3}{2}$,最小值为-$\frac{1}{2}$.
(1)求函数y=-4asin(3bx)的周期和最值及相应的x的取值集合;
(2)求函数$f(x)=2sin(a\frac{π}{3}-2bx)$的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知cosθ=$\frac{1}{3}$,且θ是第四象限角,则sinθ的值是(  )
A.-$\frac{1}{3}$B.-$\frac{2\sqrt{2}}{3}$C.$\frac{2\sqrt{2}}{3}$D.$±\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线9y2-25x2=169的渐近线方程是(  )
A.y=$\frac{5}{3}$xB.y=$\frac{3}{5}$xC.y=±$\frac{5}{3}$xD.y=±$\frac{3}{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.过曲线C1:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0\;,\;b>0)$的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,延长F1M交曲线C3:y2=2px(p>0)于点N,其中C1、C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为$\frac{{\sqrt{5}\;+1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|2x+1|+|2x-3|.
(1)求不等式f(x)≤6的解集;
(2)若对任意$x∈[-\frac{1}{2},1]$,不等式f(x)≥|2x+a|-4恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,B(-2,0),C(2,0),A(x,y),给出△ABC满足条件,就能得到动点A的轨迹方程
下表给出了一些条件及方程:
条件方程
①△ABC周长为10C1:y2=25
②△ABC面积为10C2:x2+y2=4(y≠0)
③△ABC中,∠A=90°C3:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0)
则满足条件①,②,③的轨迹方程依次为(  )
A.C3,C1,C2B.C1,C2,C3C.C3,C2,C1D.C1,C3,C2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在底面为直角梯形的四棱锥S-ABCD中,且AD∥BC,AD=DC=1,$SA=SC=SD=\sqrt{2}$.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)求三棱锥B-SAD的体积.

查看答案和解析>>

同步练习册答案