精英家教网 > 高中数学 > 题目详情
对于任意实数x,符号[x]表示x的整数部分,即[x]是“不超过x的最大整数”,在数轴上,当x是整数,[x]就是x,当x不是整数,[x]是点x左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯(Gauss)函数,如[-2]=-2,[-1.5]=-2,[2.5]=2,则[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]+…+[log216]的值为(  )
A、28B、32C、33D、34
分析:本题考查的是函数的值域问题.在解答时,可先对式子进行化简,再结合对数的大致范围结合新定义分析出相应具体值,即可进行最终式子的求值.
解答:解:由题意可知:
原式=[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]+…+[log216]
=-2-[log23]-1+0+1+[log23]+[log24]+…+[log216]
=-2-2-1+1+1+2+2+2+2+3+3+3+3+3+3+3+3+4
=33
故选C.
点评:本题考查的是函数的值域问题.在解答的过程当中充分体现了分类讨论的思想、数据处理的能力以及新定义的理解与应用.值得同学们体会与反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数,例如[2]=2;[2.1]=2;[-2.2]=-3,这个函数[x]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用,那么[log31]+[log32]+[log33]+…+[log3243]的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

13、对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数,这个函数[x]叫做“取整函数”,那么[log31]+[log32]+[log33]+[log34]+…+[log3243]=
857

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

阅读下列一段材料,然后解答问题:对于任意实数x,符号[x]表示“不超过x的最大整数”,在数轴上,当x是整数,[x]就是x,当x不是整数时,[x]是点x左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯(Gauss)函数;如[-2]=-2,[-1.5]=-2,[2.5]=2;则[log2
1
4
]+[log2
1
3
]+[log2
1
2
]+[log21]+[log22]+[log23]+[log24]
+[log216]的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意实数x,符号[x]表示x的整数部分,即[x]是不超过x的最大整数,则[log21]+[log22]+[log23]+[log24]+[log25]=
 

查看答案和解析>>

同步练习册答案