精英家教网 > 高中数学 > 题目详情
(2011•广东)如图,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为       
7:5

试题分析:根据EF的长度和与上下底平行知是梯形的中位线,设出中位线分成的两个梯形的高,根据梯形的面积公式写出两个梯形的面积,都是用含有高的代数式来表示的,求比值得到结果.
解:∵E,F分别为AD,BC上点,且EF=3,EF∥AB,
∴EF是梯形的中位线,
设两个梯形的高是h,
∴梯形ABFE的面积是
梯形EFCD的面积
∴梯形ABFE与梯形EFCD的面积比为=
故答案为:7:5
点评:本题考查梯形的中位线,考查梯形的面积公式是一个基础题,解题的时候容易出的一个错误是把两个梯形看成相似梯形,根据相似多边形的面积之比等于相似比的平方.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

有一块直角三角形木板,如图所示,∠C=90°,AB=5 cm,BC=3 cm,AC=4 cm,根据需要,要把它加工成一个面积最大的正方形木板,设计一个方案,应怎样裁才能使正方形木板面积最大,并求出这个正方形木板的边长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD内接于圆,BD是圆的直径,于点E,DA平分.
(1)证明:AE是圆的切线;
(2)如果,求CD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,圆O的两弦AB和CD交于点E,EF∥CB,EF交AD的延长线于点F,FG切圆O于点G.

(1)求证:△DEF∽△EFA;
(2)如果FG=1,求EF的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的左右焦点F1,F2的坐标为(-4,0)与(4,0),离心率e=2.
(1)求双曲线的方程;
(2)已知椭圆
x2
36
+
y2
20
=1
,点P是双曲线与椭圆两曲线在第一象限的交点,求|PF1|•|PF2|的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,AB是圆O的直径,延长AB至C,使BC=2OB,CD是圆O的切线,切点为D,连接AD、BD,则的值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(选修4-1:几何证明选讲)如图,PA是圆O的切线,切点为A,PO交圆O于B,C两点,,则=_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,⊙O与⊙O′相交于A和B,PQ切⊙O于P,交⊙O′于Q和M,交AB的延长线于N,MN=3,NQ=15,则PN=(  )
A.3B.C.3D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,D、E分别是△ABC的边AB、AC上的点,DE∥BC,
=2,那么△ADE与四边形DBCE的面积比是(  )

A.             B.          C.         D. 

查看答案和解析>>

同步练习册答案