精英家教网 > 高中数学 > 题目详情
如图所示,圆O的两弦AB和CD交于点E,EF∥CB,EF交AD的延长线于点F,FG切圆O于点G.

(1)求证:△DEF∽△EFA;
(2)如果FG=1,求EF的长.
(1)见解析(2)1.
(1)证明:因为EF∥CB,所以∠BCE=∠FED.
又∠BAD=∠BCD,所以∠BAD=∠FED.
又∠EFD=∠EFD,所以△DEF∽△EFA.
(2)解:由(1)得,即EF2=FA·FD.因为FG是切线,所以FG2=FD·FA,所以EF=FG=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知为半圆的直径,为半圆上一点,过点作半圆的切线,过点作,交半圆于点

(1)求证:平分
(2)求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA切圆O于点A,割线PBC交圆O于点B、C,∠APC的角平分线分别与AB、AC相交于点D、E,求证:

(1)AD=AE;
(2)AD2=DB·EC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,E是圆O内两弦AB和CD的交点,过AD延长线上一点F作圆O的切线FG,G为切点,已知EF=FG.

求证:(1);(2)EF//CB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,过圆O外一点P作该圆的两条割线PABPCD,分别交圆O于点ABCD,弦ADBC交于点Q,割线PEF经过点Q交圆O于点EF,点MEF上,且∠BAD=∠BMF.

(1)求证:PA·PBPM·PQ
(2)求证:∠BMD=∠BOD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2011•广东)如图,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知是⊙的切线,是切点,直线交⊙两点,的中点,连接并延长交⊙于点,若,则      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点A,B,C是圆O上的点,且AB=4,∠ACB=45°,求圆O的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知A、B、C三点的坐标分别为(0,1)、(-1,0)、(1,0),P是线段AC上一点,BP交AO于点D,设三角形ADP的面积为S,点P的坐标为(x,y),求S关于x的函数表达式.

查看答案和解析>>

同步练习册答案