精英家教网 > 高中数学 > 题目详情
设全集I=R,T={x|x2<x},M={x|x∉T},则M等于(  )
A、{x|x≥1}
B、{x|x>1}
C、{x|-1≤x≤0}
D、{x|x≥1或x≤0}
考点:一元二次不等式的解法,补集及其运算
专题:计算题,不等式的解法及应用
分析:通过二次不等式的求解推出集合T,然后求出M即可.
解答: 解:因为全集I=R,T={x|x2<x}={x|0<x<1},
所以M={x|x∉T}={x|x≥1或x≤0},
故选D.
点评:本题考查二次不等式的解法,集合的补集的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
a
=(sinx,1),
b
=(cosx,
1
2
),f(x)=
a
•(
a
-k
b

(1)求函数f(x)的值域;
(2)若函数f(x)的最大值为
5-
3
2
,则函数f(x)的图象能否由函数g(x)=2
a
b
的图象经过平移得到?若能,则写出一个平移向量
m
;若不能,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
x-5
2-x
>0的解集是(  )
A、{x|x>5或 x<2}
B、{x|2<x<5}
C、{x|x>5或 x<-2}
D、{x|-2<x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:

某影视城为提高旅游增加值,现需要对影视城内景点进行改造升级.经过市场调查,改造后旅游收入y(万元)与投入x(万元)之间满足关系:y=
51
50
x
-ax2,x∈[t,+∞),其中t为大于
1
2
的常数.当x=10万元时,y=9.2万元,又每投入x万元需缴纳(3+ln
x
10
)万元的增值税(旅游增加值=旅游收入-增值税).
(I)若旅游增加值为了f(x),求f(x)的解析式;
(Ⅱ)求旅游增加值f(x)的最大值M.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sin(
π
3
x+
π
6
),集合M={x||f(x)|=2,x>0},把M中的元素从小到大依次排成一列,得到数列{an}(n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足:b 1=1,bn+1=bn+a2n,求{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学连续郑2次骰子,并依次记下正面朝上的点数分别为x,y,记点P(x,y),则点P落在圆C:x2+y2=16内部的概率是(  )
A、
1
6
B、
1
3
C、
2
9
D、
5
18
?

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知圆的方程是(x+4)2+(y-2)2=9,求经过点P(-1,5)的切线方程.
(2)点P是椭圆
x2
16
+
y2
12
=1上的动点,A(1,0),求PA的最大、小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
p
=(x,m),
q
=(x+a,1)
,二次函数f(x)=
p
q
+1
,关于x的不等式f(x)>(2m-1)x+1-m2的解集为(-∞,m)∪(m+1,+∞),其中m为非零常数,设g(x)=
f(x)
x-1

(Ⅰ)求a的值;
(Ⅱ)若存在一条与y轴垂直的直线和函数Γ(x)=g(x)-x+lnx的图象相切,且切点的横坐标x0满足|x0-1|+x0>3,求实数m的取值范围;
(Ⅲ)当实数k取何值时,函数φ(x)=g(x)-kln(x-1)存在极值?并求出相应的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
频率分布表
组别 分组 频数 频率
第1组 [50,60) 8 0.16
第2组 [60,70) a
第3组 [70,80) 20 0.40
第4组 [80,90) 0.08
第5组 [90,100] 2 b
合计
(1)写出a,b,x,y的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动,求所抽取的2名同学来自同一组的概率;
(3)在(2)的条件下,设ξ表示所抽取的2名同学中来自第5组的人数,求ξ的分布列及其数学期望.

查看答案和解析>>

同步练习册答案