精英家教网 > 高中数学 > 题目详情
5.已知集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},若A∩B={-3},则A∪B=(  )
A.{-4,-3,0,2,3}B.{-3,-2,0,1,3}C.{-3,-1,0,1,2}D.{-4,-3,0,1,2}

分析 由A,B,以及A与B的交集求出a的值,确定出A与B,进而求出两集合的交集.

解答 解:∵A={a2,a+1,-3},B={a-3,2a-1,a2+1},且A∩B={-3},
∴a-3=-3,2a-1=-3,a2+1=-3,
解得:a=0或a=-1,
当a=0时,A={0,1,-3},B={-3,-1,0},不合题意;
当a=-1时,A={1,0,-3},B={-4,-3,2},符合题意;
则A∪B={-4,-3,0,1,2},
故选:D.

点评 此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知sinα=$\frac{1}{3}$,α∈($\frac{π}{2}$,π),cosβ=-$\frac{3}{5}$,β∈(π,$\frac{3π}{2}$),求sin(α+β)和cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图是偶函数y=f(x)的局部图象,根据图象所给信息,下列结论正确的是(  )
A.f(-2)-f(6)=0B.f(-2)-f(6)<0C.f(-2)+f(6)=0D.f(-2)-f(6)>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设P和Q是两个集合,定义集合P+Q={x∈P或x∈Q且∉P∩Q},若P={x|x2-3x-4≤0},Q={x|y=log2(x2-2x-15)},那么P+Q等于(  )
A.[-1,4]B.(-∞,-1]∪[4,+∞)C.(-3,5)D.(-∞,-3)∪[-1,4]∪(5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,且焦距为4.
(1)求椭圆的方程;
(2)直线l过点P(0,2)且与椭圆相交于A、B两点,当△AOB面积取得最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知定义域为R的函数$f(x)=\frac{{b-{2^x}}}{{{2^{x+1}}+a}}$是奇函数,则a+b=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设定义域为R的函数f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|}(x≠1)}\\{1(x=1)}\end{array}\right.$,若关于x的方程f2(x)+bf(x)+c=0有5个不同的实数解,则b+c值为(  )
A.0B.1C.-1D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=x3-px2-qx的图象与x轴相切于点(1,0),则f(x)的单调增区间为(-∞,$\frac{1}{3}$)或(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=$\frac{1+2lnx}{{x}^{2}}$.
(1)求f(x)的单调区间;
(2)令g(x)=ax2-2lnx,则g(x)=1时有两个不同的根,求a的取值范围;
(3)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)-f(x2)|≥k|lnx1-lnx2|成立,求k的取值范围.

查看答案和解析>>

同步练习册答案