精英家教网 > 高中数学 > 题目详情
已知椭圆C:=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,且经过椭圆的右焦点,记椭圆的离心率为e.
(1)若直线l的倾斜角为,求e的值;
(2)是否存在这样的e,使得原点O关于直线l对称的点恰好在椭圆C上?若存在,请求出e的值;若不存在,请说明理由.
【答案】分析:(1)求出椭圆的右焦点,进而可设直线方程,利用直线l为圆O:x2+y2=b2的一条切线,可得一方程,利用椭圆的简单性质a2=b2+c2,根据离心率公式即可求出e的值;
(2)假设存在这样的e,使得原点O关于直线l的对称点恰好在椭圆C上,不妨设方程为x-my-c=0,从而利用原点O关于直线的对称点在椭圆上,即可求解.
解答:解:(1)设椭圆的右焦点为(c,0),,则直线的方程为
∵直线l为圆O:x2+y2=b2的一条切线



(2)假设存在这样的e,使得原点O关于直线l的对称点恰好在椭圆C上,不妨设方程为x-my-c=0
∵直线l为圆O:x2+y2=b2的一条切线

设原点O关于直线的对称点O′(x,y),则
∵O′在椭圆上,代入可得
∴b2=3c2
不成立
故不存在这样的e,使得原点O关于直线l的对称点恰好在椭圆C上
点评:本题以椭圆为载体,考查椭圆的离心率,考查对称问题,有一定的综合性.
练习册系列答案
相关习题

科目:高中数学 来源:2013年四川省资阳市高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0)经过(1,1)与()两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线l与椭圆C交于A、B两点,椭圆C上一点M满足|MA|=|MB|.求证:++为定值.

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题

已知椭圆C:+=1(a>b>0)的左右焦点为F1,F2,过F2线与圆x2+y2=b2相切于点A,并与椭圆C交与不同的两点P,Q,如图,PF1⊥PQ,若A为线段PQ的靠近P的三等分点,则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:2012年吉林省高考数学仿真模拟试卷9(理科)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学总复习备考综合模拟试卷(3)(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0),直线l为圆O:x2+y2=b2的一条切线,记椭圆C的离心率为e.
(1)若直线l的倾斜角为,且恰好经过椭圆的右顶点,求e的大小;
(2)在(1)的条件下,设椭圆的上顶点为A,左焦点为F,过点A与AF垂直的直线交x轴的正半轴于B点,过A、B、F三点的圆恰好与直线l:x+y+3=0相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省攀枝花市高三12月月考文科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,且在x轴上的顶点分别为

(1)求椭圆方程;

(2)若直线轴交于点T,P为上异于T的任一点,直线分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.

 

查看答案和解析>>

同步练习册答案