0£¼¦Á£¼1,0£¼¦Â£¼1£¬ÊýÁÐ{xn},{yn}ÓÉÒÔÏÂÌõ¼þÈ·¶¨£º(x1,y1)=(2,1),(xn+1,yn+1)=(¦Áxn+1-¦Á,¦Âyn+2-2¦Â), (n=1,2,3,¡­)Íê³ÉÒÔÏÂÎÊÌâ.

(1)ÇóÊýÁÐ{xn}Óë{yn}µÄͨÏ

(2)Çóxn£¬yn£»

(3)ÊýÁÐ{xn},{yn}ÊÇÓÐÏÞÊýÁÐʱ£¬µ±¦Á=¦Âʱ£¬Çóµã(xn,yn)µÄ´æÔÚ·¶Î§£»

(4)ÊýÁÐ{xn},{yn}ÊÇÓÐÏÞÊýÁÐʱ£¬µ±¦Â¡Ý¦Á2ʱ£¬½«µã(xn,yn)µÄ´æÔÚ·¶Î§ÓÃͼÐαíʾ³öÀ´.

½â£º(1)ÓÉÌâÉèµÃ¡à

¡à{xn-1}Óë{yn-2}Êǹ«±È·Ö±ðΪ¦Á,¦ÂµÄµÈ±ÈÊýÁÐ.

¡àÓÖ

¡àn=1ʱҲ³ÉÁ¢.                                                

(2)¡ß0£¼¦Á£¼1,0£¼¦Â£¼1,¡àxn=1,yn=2.                                      

(3)(x1,y1)=(2,1),2¡Ük¡Ünʱ£¬ÓɦÁ=¦Â,xk=1+¦Ák-1,yk=2-¦Ák-1.

ÏûÈ¥¦Ák-1µÃxk+yk=3,ÓÉk¡Ý2¼°0£¼¦Á£¼1,

¡àµã(xn,yn)ÔÚÏ߶Îx+y=3(1£¼x¡Ü2)ÉÏ.                                            

(4)(x1,y1)=(2,1),2¡Ük¡Ünʱ,k-1£¾0,

ÓÉ(2)µÃ1£¼xk£¼2,1£¼yk£¼2,ÓÖ(¦Ák-1)2=(xk-1)2,

¡à(¦Á2)k-1=(xk-1)2.¡ß¦Â¡Ý¦Á2,¡à¦Âk-1¡Ý(¦Á2)k-1,¼´2-yk¡Ý(xk-1)2.

¡àyk¡Ü-(xk-1)2+2,¡àµã(xn,yn)ËùÔڵķ¶Î§ÊÇy¡Ü-(x-1)2+2ÇÒ1£¼x£¼2,1£¼y£¼2¼°µã(2£¬1)£¬ÆäͼÐÎΪͼÖÐÒõÓ°²¿·Ö.

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ö±Ïß4x+y-9=0Óëx-y-1=0µÄ¹«¹²µãAµÄ×ø±êÊÇ
 
£»É趯µãPµÄ×ø±ê£¨x£¬y£©Âú×ãÔ¼ÊøÌõ¼þ
4x+y-9¡Ý0
x-y-1¡Ü0
2x+3y-17¡Ü0
ÇÒOΪ×ø±êÔ­µã£¬Ôò
OP
OA
µÄ×îСֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ¶¨ÒåÓòΪ[0£¬1]µÄº¯Êýf£¨x£©Èç¹ûÂú×ãÒÔÏÂÈý¸öÌõ¼þ£º¢Ù¶ÔÈÎÒâµÄx¡Ê[0£¬1]£¬×ÜÓÐf£¨x£©¡Ý2£»¢Úf£¨1£©=3£»¢ÛÈôx1¡Ý0£¬x2¡Ý0£¬x1+x2¡Ü1£¬¶¼ÓÐf£¨x1+x2£©¡Ýf£¨x1£©+f£¨x2£©-2³ÉÁ¢£®Ôò³Æº¯Êýf£¨x£©ÎªÀíÏ뺯Êý£®
£¨1£©ÅжϺ¯Êýg£¨x£©=2x+1 £¨0¡Üx¡Ü1£©ÊÇ·ñΪÀíÏ뺯Êý£¬²¢ÓèÒÔÖ¤Ã÷£»
£¨2£©Çó¶¨ÒåÓòΪ[0£¬1]µÄÀíÏ뺯Êýf£¨x£©µÄ×î´óÖµºÍ×îСֵ£»
£¨3£©Ä³Í¬Ñ§·¢ÏÖ£ºµ±x=
1
2n
£¨n¡ÊN£©Ê±£¬ÓÐf£¨
1
2n
£©¡Ü
1
2n
+2£¬ÓÉ´ËËûÌá³ö²ÂÏ룺¶ÔÒ»ÇÐx¡Ê£¨0£¬1]£¬¶¼ÓÐf£¨x£©£¼2x+2£¬ÇëÄã¸ù¾Ý¸Ãͬѧ·¢ÏֵĽáÂÛ£¨»òÆäËü·½·¨£©À´Åжϴ˲ÂÏëÊÇ·ñÕýÈ·£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©ÈôÈýÌõÖ±Ïß2x+3y+8=0£¬x-y-1=0ºÍx+ky=0ÏཻÓÚÒ»µã£¬ÔòkµÄֵΪ£¿
£¨2£©Èô¦Á¡ÊN£¬ÓÖÈýµãA£¨¦Á£¬0£©£¬B£¨0£¬¦Á+4£©£¬C£¨1£¬3£©¹²Ïߣ¬Çó¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚijУ¾ÙÐеÄÊýѧ¾ºÈüÖУ¬È«Ìå²ÎÈüѧÉúµÄ¾ºÈü³É¼¨½üËÆ·þ´ÓÕý̬·Ö²¼¡£ÒÑÖª³É¼¨ÔÚ90·ÖÒÔÉÏ£¨º¬90·Ö£©µÄѧÉúÓÐ12Ãû¡£

£¨¢ñ£©¡¢ÊÔÎʴ˴βÎÈüѧÉú×ÜÊýԼΪ¶àÉÙÈË£¿

£¨¢ò£©¡¢Èô¸ÃУ¼Æ»®½±Àø¾ºÈü³É¼¨ÅÅÔÚÇ°50ÃûµÄѧÉú£¬ÊÔÎÊÉè½±µÄ·ÖÊýÏßԼΪ¶àÉÙ·Ö£¿

¿É¹²²éÔĵģ¨²¿·Ö£©±ê×¼Õý̬·Ö²¼±í

0

1

2

3

4

5

6

7

8

9

1.2

1.3

1.4

1.9

2.0

2.1

0.8849

0.9032

0.9192

0.9713

0.9772

0.9821

0.8869

0.9049

0.9207

0.9719

0.9778

0.9826

0.888

0.9066

0.9222

0.9726

0.9783

0.9830

0.8907

0.9082

0.9236

0.9732

0.9788

0.9834

0.8925

0.9099

0.9251

0.9738

0.9793

0.9838

0.8944

0.9115

0.9265

0.9744

0.9798

0.9842

0.8962

0.9131

0.9278

0.9750

0.9803

0.9846

0.8980

0.9147

0.9292

0.9756

0.9808

0.9850

0.8997

0.9162

0.9306

0.9762

0.9812

0.9854

0.9015

0.9177

0.9319

0.9767

0.9817

0.9857

µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éÕý̬·Ö²¼£¬¶Ô¶ÀÁ¢Ê¼þµÄ¸ÅÄîºÍ±ê×¼Õý̬·Ö²¼µÄ²éÔÄ£¬¿¼²éÔËÓøÅÂÊͳ¼Æ֪ʶ½â¾öʵ¼ÊÎÊÌâµÄÄÜÁ¦¡£

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚijУ¾ÙÐеÄÊýѧ¾ºÈüÖУ¬È«Ìå²ÎÈüѧÉúµÄ¾ºÈü³É¼¨½üËÆ·þ´ÓÕý̬·Ö²¼¡£ÒÑÖª³É¼¨ÔÚ90·ÖÒÔÉÏ£¨º¬90·Ö£©µÄѧÉúÓÐ12Ãû¡£

£¨¢ñ£©¡¢ÊÔÎʴ˴βÎÈüѧÉú×ÜÊýԼΪ¶àÉÙÈË£¿

£¨¢ò£©¡¢Èô¸ÃУ¼Æ»®½±Àø¾ºÈü³É¼¨ÅÅÔÚÇ°50ÃûµÄѧÉú£¬ÊÔÎÊÉè½±µÄ·ÖÊýÏßԼΪ¶àÉÙ·Ö£¿

¿É¹²²éÔĵģ¨²¿·Ö£©±ê×¼Õý̬·Ö²¼±í

0

1

2

3

4

5

6

7

8

9

1.2 1.3 1.4 1.9 2.0 2.1

0.8849 0.9032 0.9192 0.9713 0.9772 0.9821

0.8869 0.9049 0.9207 0.9719 0.9778 0.9826

0.888 0.9066 0.9222 0.9726 0.9783 0.9830

0.8907 0.9082 0.9236 0.9732 0.9788 0.9834

0.8925 0.9099 0.9251 0.9738 0.9793 0.9838

0.8944 0.9115 0.9265 0.9744 0.9798 0.9842

0.8962 0.9131 0.9278 0.9750 0.9803 0.9846

0.8980 0.9147 0.9292 0.9756 0.9808 0.9850

0.8997 0.9162 0.9306 0.9762 0.9812 0.9854

0.9015 0.9177 0.9319 0.9767 0.9817 0.9857

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸