精英家教网 > 高中数学 > 题目详情

数学公式,且sinα+sinγ=sinβ,cosβ+cosγ=cosα,则β-α等于


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:把已知的两等式分别移项,使关于γ的三角函数移项到等式右边,根据α,β,γ的范围得到β大于α,然后把化简后的两等式两边分别平方后,相加并利用同角三角函数间的基本关系及两角差的余弦函数公式化简后,得到cos(α-β)的值,根据α与β的范围及β大于α,得到β-α大于0,利用特殊角的三角函数值即可求出β-α的值.
解答:sinβ-sinα=sinγ>0,cosα-cosβ=cosγ>0,
则(sinβ-sinα)2+(cosα-cosβ)2=1,且β>α,
即cos(α-β)=(0<α<β<),
则α-β=-
故选C.
点评:此题考查学生灵活运用同角三角函数间的基本关系及两角差的余弦函数公式化简求值,是一道基础题.学生做题时应根据已知条件判断出β>α,进而得到β-α的值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若
cosA
cosB
=
b
a
且sinC=cosA
(Ⅰ)求角A、B、C的大小;
(Ⅱ)设函数f(x)=sin(2x+A)+cos(2x-
C
2
)
,求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC中内角A、B、C的对边分别为a、b、c,且sin2A+sin2B=sin2C+sinAsinB.
(1)求角C的值;
(2)设函数f(x)=sin(ωx-
π6
)-cosωx(ω>0)
,且f(x)图象上相邻两最高点间的距离为π,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<α≤β≤γ,且α+β+γ=π,则min{
sinβ
sinα
sinγ
sinβ
}的取值范围为
[1,
1+
5
2
[1,
1+
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

α.β.γ∈(0,
π
2
)
,且sinα+sinγ=sinβ,cosβ+cosγ=cosα,则β-α等于(  )
A、-
π
3
B、
π
6
C、
π
3
D、
π
3
或-
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+
π
3
)
,则下列结论正确的是(  )

查看答案和解析>>

同步练习册答案