精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x+a|,g(x)=-|x-3|+1.
(1)解关于x的不等式f(x)+g(x)>1;
(2)若对?x∈R,f(x)>g(x)恒成立,求a的取值范围.
分析:(1)解绝对值不等式的方法有多种,本题可用平方法去掉绝对值,转化为解一元一次不等式,注意讨论字母a
(2)f(x)>g(x)恒成立?|x+a|+|x-3|>1恒成立,从而转化为求y=|x+a|+|x-3|的最小值问题,可利用绝对值的几何意义得到此函数的最小值
解答:解:(1)不等式f(x)+g(x)>1,即|x+a|>|x-3|,
两边平方得:2(a+3)x>(3+a)(3-a)
∴当a=-3时,解集为∅
当a>-3时,解集为(
3-a
2
,+∞)

当a<-3时,解集为(-∞,
3-a
2
)

(2)若对任意x∈R,f(x)>g(x)恒成立,则|x+a|>-|x-3|+1对任意实数x恒成立,即|x+a|+|x-3|>1恒成立,
∵|x+a|+|x-3|≥|a+3|
∴|a+3|>1,解得a>-2或a<-4
点评:本题考查了绝对值不等式的解法,绝对值三角不等式的应用等知识,考查了分类讨论和转化的思想方法,属基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案