精英家教网 > 高中数学 > 题目详情
10.计算:$\frac{(1-2i)(3+4i)-2+i}{5-6i}$.

分析 直接由复数代数形式的乘除运算化简得答案.

解答 解:$\frac{(1-2i)(3+4i)-2+i}{5-6i}$=$\frac{11-2i-2+i}{5-6i}=\frac{9-i}{5-6i}=\frac{(9-i)(5+6i)}{(5-6i)(5+6i)}$=$\frac{51}{61}-\frac{49}{61}i$.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设f(x)为奇函数,且在(0,+∞)上是增函数,f(-2015)=0,则xf(x)>0的解集为(  )
A.(-∞,2015)∪(2015,+∞)B.(-∞,-2015)∪(0,2015)C.(-2015,0)∪(0,2015)D.(-2015,0)∪(2015,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知实数x、y满足$\left\{\begin{array}{l}{y≤x}\\{x+2y≤4}\\{y≥-1}\end{array}\right.$,则$\frac{y+2}{x+1}$的最小值为$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|y=$\sqrt{3x-{x}^{2}}$},B={x|$\frac{x+1}{x-2}$<0},则A∩B=(  )
A.{x|0<x<2}B.{x|0≤x<2}C.{x|-1<x≤3}D.{x|2<x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=log2(2x+m)的定义域为(2,+∞),则f(10)等于(  )
A.3+log23B.3C.1+2log23D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)=$\left\{\begin{array}{l}{1-|x-1|}&{x∈(-∞,2)}\\{\frac{1}{2}f(x-2)}&{x∈[2,+∞)}\end{array}\right.$,g(x)=$\frac{1}{x}$,则函数F(x)=f(x)-g(x)的零点个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知9x-10•3x+9≤0,求函数y=${(\frac{1}{4})}^{x}$-${(\frac{1}{2})}^{x-2}$+2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知z=$\frac{(4-3i)^{2}(-1+\sqrt{3}i)^{10}}{(1-i)^{12}(3+i)^{4}}$,求3i-|z|的模及辐角主值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+$\frac{1}{x+b}$(a,b∈R).
(1)判断函数f(x)的奇偶性,并说明理由;
(2)当b=0时,f(x)≥$\frac{1}{4}$a+2在(0,$\frac{1}{2}$]上恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案