精英家教网 > 高中数学 > 题目详情

已知函数

(1)若上恒成立,求m取值范围;

(2)证明:).

(注:

 

【答案】

(1);(2)证明过程详见解析.

【解析】

试题分析:本题考查导数的应用、不等式、数列等基础知识,考查思维能力、运算能力、分析问题与解决问题的能力和创新意识,考查函数、转化与化归、分类讨论、特殊与一般等数学思想方法.第一问,将上恒成立,转化为恒成立,设出新函数,求导数,判断导数的正负,确定函数的单调性,但是导数中含参数,所以需讨论方程的根与1的大小;第二问,借助第一问的结论,取,即可得到所证不等式左边的形式,令,累加得,得出左边的式子,右边利用题中题供的公式化简.

试题解析:(1)令上恒成立

时,即

恒成立.上递减.

原式成立.

 

不能恒成立.

综上:                                6分

(2) 由 (1) 取

∴化简证得原不等式成立.                        12分

考点:1.恒成立问题;2.利用导数求函数的最值.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数.

(1)若点()为函数的图象的公共点,试求实数的值;

(2)设是函数的图象的一条对称轴,求的值;

(3)求函数的值域。

查看答案和解析>>

科目:高中数学 来源:2014届河南安阳一中高二第二次阶段考试理科数学试卷(解析版) 题型:解答题

(12分)已知函数

 (1)若当的表达式;

(2)求实数上是单调函数.

 

查看答案和解析>>

科目:高中数学 来源:2011年湖南省高三第一次学情摸底考试数学卷 题型:解答题

(本题满分13 分)

    已知函数

   (1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值;

   (2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围;

   (3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市高三寒假作业数学卷一 题型:解答题

(15 分)

已知函数

(1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值;

(2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围;

(3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届贵州省高一上学期期末考试数学 题型:解答题

、(本小题满分12分)已知函数

(1)若,求的零点;

(2)若函数在区间上有两个不同的零点,求的取值范围。

 

 

 

查看答案和解析>>

同步练习册答案