已知函数.
(1)若在上恒成立,求m取值范围;
(2)证明:().
(注:)
(1);(2)证明过程详见解析.
【解析】
试题分析:本题考查导数的应用、不等式、数列等基础知识,考查思维能力、运算能力、分析问题与解决问题的能力和创新意识,考查函数、转化与化归、分类讨论、特殊与一般等数学思想方法.第一问,将在上恒成立,转化为恒成立,设出新函数,求导数,判断导数的正负,确定函数的单调性,但是导数中含参数,所以需讨论方程的根与1的大小;第二问,借助第一问的结论,取,即可得到所证不等式左边的形式,令,累加得,得出左边的式子,右边利用题中题供的公式化简.
试题解析:(1)令在上恒成立
当时,即时
在恒成立.在上递减.
原式成立.
当即时
不能恒成立.
综上: 6分
(2) 由 (1) 取有
令
∴化简证得原不等式成立. 12分
考点:1.恒成立问题;2.利用导数求函数的最值.
科目:高中数学 来源:2011年湖南省高三第一次学情摸底考试数学卷 题型:解答题
(本题满分13 分)
已知函数
(1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值;
(2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围;
(3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省杭州市高三寒假作业数学卷一 题型:解答题
(15 分)
已知函数
(1)若在的图象上横坐标为的点处存在垂直于y 轴的切线,求a 的值;
(2)若在区间(-2,3)内有两个不同的极值点,求a 取值范围;
(3)在(1)的条件下,是否存在实数m,使得函数的图象与函数的图象恰有三个交点,若存在,试出实数m 的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2014届贵州省高一上学期期末考试数学 题型:解答题
、(本小题满分12分)已知函数
(1)若,求的零点;
(2)若函数在区间上有两个不同的零点,求的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com