精英家教网 > 高中数学 > 题目详情
15.如图①所示,四边形ABCD为等腰梯形,AD∥BC,且AD=$\frac{1}{3}$BC=a,∠BAD=135°,AE⊥BC于点E,F为BE的中点.将△ABE沿着AE折起至△AB′E的位置,得到如图②所示的四棱锥B′-ADCE.
(1)求证:AF∥平面B′CD;
(2)若平面AB′E⊥平面AECD,求二面角B′-CD-E的余弦值.

分析 (1)取B′C的中点G,连接FG,DG,推导出四边形ADGF为平行四边形,从而AF∥DG,由此能证明AF∥平面B′CD.
(2)以点E为原点,EB′为x轴,EC为y轴,EA为z轴,建立空间直角坐标系,利用向量法能求出二面角B′-CD-E的余弦值.

解答 证明:(1)取B′C的中点G,连接FG,DG.
∵F为B′E的中点,
∴FG∥EC,且FG=$\frac{1}{2}$EC,…(2分)
∵图①中四边形ABCD为等腰梯形,AD∥BC,
且AD=$\frac{1}{3}BC=a$,AE⊥BC,∠BAD=135°,
∴EC=2a,AD∥EC,AD=$\frac{1}{2}$EC,
∴AD∥FG,AD=FG,
∴四边形ADGF为平行四边形,∴AF∥DG,…(5分)
∵AF?平面B′CD,DG?平面B′CD,
∴AF∥平面B′CD.…(6分)
(2)由题意得EA,EB′,EC两两垂直,故以点E为原点,EB′为x轴,EC为y轴,EA为z轴,建立空间直角坐标系,
∴B′(a,0,0),D(0,a,a),C(0,2a,0),
∴$\overrightarrow{{B}^{'}C}$=(-a,2a,0),$\overrightarrow{CD}$=(0,-a,a),设平面B′CD的法向量为$\overrightarrow{n}$=(x,y,z).
则$\left\{\begin{array}{l}{\overrightarrow{{B}^{'}C}•\overrightarrow{n}=-ax+2ay=0}\\{\overrightarrow{CD}•\overrightarrow{n}=-ay+az=0}\end{array}\right.$,令z=1,得$\overrightarrow{n}$=(2,1,1),…(10分)
由题意$\overrightarrow{E{{B}^{'}}_{\;}}$=(a,0,0)为平面AECD的一个法向量,
∴cos<$\overrightarrow{E{B}^{'}}$,$\overrightarrow{n}$>=$\frac{2a}{a\sqrt{6}}$=$\frac{\sqrt{6}}{3}$,…(11分)
由图知平面B′CD与平面AECD所成的二面角为锐角,
∴二面角B′-CD-E的余弦值为$\frac{\sqrt{6}}{3}$.…(12分)

点评 本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知f(x),g(x)分别是定义在R上的偶函数和奇函数且f(x)-g(x)=x3+x2+1,则g(-1)=(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,a1=2,Sn=λan-2,其中λ为常数.
(Ⅰ)求λ的值及数列{an}的通项公式;
(Ⅱ)令bn=$\frac{1}{{{{log}_2}{a_n}•{{log}_2}{a_{n+2}}}}$,数列{bn}的前n项和Tn,求证:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一条直线上有三点A,B,C,点C在点A与点B之间,P是此直线外一点,设∠BPC=β,∠APC=α,则$\frac{sin(α+β)}{PC}$=(  )
A.$\frac{sinβ}{PA}$-$\frac{sinβ}{PB}$B.$\frac{sinα}{PB}$-$\frac{sinβ}{PA}$C.$\frac{sinα}{PA}$+$\frac{sinβ}{PB}$D.$\frac{sinα}{PB}$+$\frac{sinβ}{PA}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知F1,F2是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{18}$=1(a>0)的左右焦点,过F1的直线l与双曲线的左支交于点B,与右支交于点A,若△ABF2为等边三角形,则△BF1F2的面积为(  )
A.$6\sqrt{3}$B.$8\sqrt{3}$C.$18\sqrt{3}$D.$8\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若a,b∈[0,1],则不等式a2+b2≤1成立的概率为(  )
A.$\frac{π}{16}$B.$\frac{π}{12}$C.$\frac{π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.由曲线y=$\sqrt{x}$,直线y=2-x及x轴所围成的图形的面积为$\frac{7}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题“已知x,y∈R,如果x2+y2=0,那么x=0且y=0”的逆否命题是(  )
A.已知x,y∈R,如果x2+y2≠0,那么x≠0且y≠0
B.已知x,y∈R,如果x2+y2≠0,那么x≠0或y≠0
C.已知x,y∈R,如果x≠0或y≠0,那么x2+y2≠0
D.已知x,y∈R,如果x≠0且y≠0,那么x2+y2≠0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义在R上的奇函数f(x),当x>0时,f(x)=x-2
(1)求函数f(x)的解析式;
(2)求不等式f(x)<2的解集.

查看答案和解析>>

同步练习册答案