精英家教网 > 高中数学 > 题目详情
10.已知F1,F2是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{18}$=1(a>0)的左右焦点,过F1的直线l与双曲线的左支交于点B,与右支交于点A,若△ABF2为等边三角形,则△BF1F2的面积为(  )
A.$6\sqrt{3}$B.$8\sqrt{3}$C.$18\sqrt{3}$D.$8\sqrt{2}$

分析 由题意可知:|AF1|-|AF2|=2a,|BF2|-|BF1|=2a,根据等边三角形的性质,即可求得,|BF1|=2a,|BF2|=4a,△BF1F2中由余弦定理即可求得c2=7a2,由双曲线的性质可知:a2+18=7a2,即可求得a的值,由三角形的面积公式可知∴△BF1F2的面积为${S}_{△A{F}_{1}{F}_{2}}$-${S}_{△AB{F}_{2}}$=$\frac{1}{2}$×6a×4a×sin$\frac{π}{3}$-$\frac{\sqrt{3}}{2}$×(4a)2,即可求得△BF1F2的面积.

解答 解:根据双曲线的定义,可得|AF1|-|AF2|=2a,
∵△ABF2是等边三角形,即|AF2|=|AB|,
|AF1|-|AB|=|BF1|=2a,
又∵|BF2|-|BF1|=2a,
∴|BF2|=|BF1|+2a=4a,
∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120°
∴|F1F2|2=|BF1|2+|BF2|2-2|BF1|•|BF2|cos120°
即4c2=4a2+16a2-2×2a×4a×(-$\frac{1}{2}$)=28a2,解得c2=7a2
∴a2+18=7a2
∴a=$\sqrt{3}$,
∴△BF1F2的面积为${S}_{△A{F}_{1}{F}_{2}}$-${S}_{△AB{F}_{2}}$=$\frac{1}{2}$×6a×4a×sin$\frac{π}{3}$-$\frac{\sqrt{3}}{2}$×(4a)2
=$\frac{1}{2}$×6$\sqrt{3}$×4$\sqrt{3}$×$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{2}$×(4×2)2=6$\sqrt{3}$,
故选A.

点评 本题考查双曲线的标准方程及简单性质,考查三角形的面积公式及余弦定理的综合应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.过双曲线$\frac{x^2}{4}$-$\frac{y^2}{2}$=1的右焦点F作直线l交双曲线于A?B两点,若|AB|=5,则这样的直线l有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若直线ax+y-4=0与直线x-y-2=0的交点位于第一象限,则实数a的取值范围是-1<a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\frac{2x+1}{x+1}$的对称中心为(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在锐角△ABC中,a=2bsinA,则cosA+sinC的取值范围是($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图①所示,四边形ABCD为等腰梯形,AD∥BC,且AD=$\frac{1}{3}$BC=a,∠BAD=135°,AE⊥BC于点E,F为BE的中点.将△ABE沿着AE折起至△AB′E的位置,得到如图②所示的四棱锥B′-ADCE.
(1)求证:AF∥平面B′CD;
(2)若平面AB′E⊥平面AECD,求二面角B′-CD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若圆x2+y2=r2(r>0)上恰有两个点到直线2x+2y+$\sqrt{2}$=0的距离等于1,则r的取值范围是(  )
A.r>$\frac{1}{2}$B.$\frac{1}{2}$<r<$\frac{3}{2}$C.r<$\frac{3}{2}$D.r≥$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用二分法求函数f(x)的一个正实数零点时,经计算,f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确到0.1的正实数零点的近似值为(  )
A.0.68B.0.72C.0.7D.0.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数是偶函数且在[0,+∞)上是减函数的是(  )
A.y=xB.y=2xC.y=x2D.y=-x2

查看答案和解析>>

同步练习册答案