精英家教网 > 高中数学 > 题目详情
20.过双曲线$\frac{x^2}{4}$-$\frac{y^2}{2}$=1的右焦点F作直线l交双曲线于A?B两点,若|AB|=5,则这样的直线l有(  )
A.1条B.2条C.3条D.4条

分析 先看当A、B都在左支上时,若AB垂直x轴,根据双曲线方程求得焦点的坐标,把焦点横坐标代入双曲线方程求得交点的纵坐标,进而求得AB的长小于5,则考虑不垂直于x轴的两条;再看若A、B分别在两支先看A,B为两顶点时,不符合题意进而可推断出符合题意的直线有两条,最后综合可得答案.

解答 解:①若A、B都在右支,
若AB垂直x轴,a2=4,b2=2,c2=6,所以F($\sqrt{6}$,0)
则AB:x=$\sqrt{6}$,
代入双曲线线$\frac{x^2}{4}$-$\frac{y^2}{2}$=1求得y=±$\frac{4}{\sqrt{6}}$,
所以AB=|y1-y2|=$\frac{8}{\sqrt{6}}$<5,不成立;
若A,B不垂直于x轴,则有两条直线满足;
②若A、B分别在两支,
a=2,所以顶点距离为2+2=4<5,所以|AB|=5有两条,关于x轴对称.
所以一共4条.
故选:D.

点评 本题主要考查了双曲线的对称性和直线与双曲线的关系.考查了学生分析推理和分类讨论思想的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知圆C1:(x+2)2+(y-1)2=4与圆C2:(x-3)2+(y-4)2=4,过点P(-1,5)作两条互相垂直的直线l1:y=k(x+1)+5,l2:y=-$\frac{1}{k}$(x+1)+5.
(1)若k=2时,设l1与圆C1交于A、B两点,求经过A、B两点面积最小的圆的方程.
(2)若l1与圆C1相交,求证:l2与圆C2相交,且l1被圆C1截得的弦长与l2被圆C2截得的弦长相等.
(3)是否存在点Q,过Q的无数多对斜率之积为1的直线l3,l4,l3被圆C1截得的弦长与l4被圆C2截得的弦长相等.若存在求Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx-$\frac{1}{x}$,g(x)=-ax+b.
(I)讨论函数h(x)=f(x)-g(x)单调区间;
(II)若直线g(x)=-ax+b是函数f(x)=lnx-$\frac{1}{x}$图象的切线,求b-a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l1的方程为3x+4y-7=0,直线l2的方程为6x+8y+1=0,则直线l1与l2的距离为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.2013年4月初眉山市“体彩杯”中小学生田径运动会圆满落幕,市文体局举行表彰大会.某校有男运动员6名,女运动员4名,其中男女队长各1人,从中选5人参加表彰会,下列情形各有多少种选派方法(结果用数字作答).
(1)男3名,女2名                 
(2)队长至少有1人参加
(3)至少1名女运动员              
(4)既要有队长,又要有女运动员.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x),g(x)分别是定义在R上的偶函数和奇函数且f(x)-g(x)=x3+x2+1,则g(-1)=(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.
(1)求第七组的频率,并估计该校的800名男生的身高的中位数以及身高在180cm以上(含180cm)的人数;
(2)若从身高属于第六组和第八组的男生中随机抽取两名男生,求他们的身高之差不超过5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知:p:|x+1|≤3,q:x2-2x+1-m2≤0,m>0.
(Ⅰ)若m=2,命题“p或q”为真,“p且q”为假,求实数x的取值范围;
(Ⅱ)若p是q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知F1,F2是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{18}$=1(a>0)的左右焦点,过F1的直线l与双曲线的左支交于点B,与右支交于点A,若△ABF2为等边三角形,则△BF1F2的面积为(  )
A.$6\sqrt{3}$B.$8\sqrt{3}$C.$18\sqrt{3}$D.$8\sqrt{2}$

查看答案和解析>>

同步练习册答案