·ÖÎö £¨1£©¾¹ýA¡¢BÁ½µãÃæ»ý×îСµÄÔ²Ó¦ÊÇÒÔABΪֱ¾¶µÄÔ²£»
£¨2£©Ö¤Ã÷l2ÓëÔ²C2Ïཻ£¬ÀûÓÃÁ½Ô²µÄ°ë¾¶ÏàµÈ£¬¶øÁ½ÏÒÐľàÏàµÈ£¬¿ÉµÃËù½ØµÃµÄÏÒ³¤ÏàµÈ£»
£¨3£©ÓÉd3=d4µÃ|1-b+m£¨a+2£©|=|a-3+m£¨4-b£©|¡à1-b+m£¨a+2£©=a-3+m£¨4-b£©£¨1£©»ò1-b+m£¨a+2£©=3-a+m£¨b-4£©£¨2£©£¬£¨1£©£¨2£©¶ÔÓÚÎÞÊý¶à¸ömµÄÖµ¶¼³ÉÁ¢£®$\left\{\begin{array}{l}1-b=a-3\\ a+2=4-b\end{array}\right.$£¨3£©»ò$\left\{\begin{array}{l}1-b=3-a\\ a+2=b-4\end{array}\right.$£¨4£©£¬£¨3£©£¨4£©¶¼Î޽⣬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©µ±k=2ʱ£¬l1µÄ·½³ÌΪy=2x+7
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{£¨x+2£©^2}+{£¨y-1£©^2}=4\\ y=2x+7\end{array}\right.$£¬ÕûÀíµÃ5x2+28x+36=0
ÉèA¡¢BΪA£¨x1£¬y1£©£¬B£¨x2£¬y2£©¡à${x_1}+{x_2}=-\frac{28}{5}$£¬${x_1}{x_2}=\frac{36}{5}$£¬${y_1}+{y_2}=\frac{14}{5}$£¬${y_1}{y_2}=-\frac{3}{5}$£¬
¾¹ýA¡¢BÁ½µãÃæ»ý×îСµÄÔ²Ó¦ÊÇÒÔABΪֱ¾¶µÄÔ²£¬
Ô²µÄ·½³ÌΪ£¨x-x1£©£¨x-x2£©+£¨y-y1£©£¨y-y2£©=0£®
¼´x2+y2-£¨x1+x2£©x-£¨y1+y2£©y+x1x2+y1y2=0
ËùÇóÔ²µÄ·½³Ì£º${x^2}+{y^2}+\frac{28}{5}x-\frac{14}{5}y+\frac{33}{5}=0$¡£¨4·Ö£©
£¨2£©ÉèÔ²C1µÄÔ²Ðĵ½l1µÄ¾àÀëΪd1£¬Ô²C2µÄÔ²Ðĵ½l2µÄ¾àÀëΪd2£¬Ôò${d_1}=\frac{{|{k-4}|}}{{\sqrt{1+{k^2}}}}£¼2$${d_2}=\frac{{|{\frac{4}{k}-1}|}}{{\sqrt{1+\frac{1}{k_2}}}}=\frac{{|{k-4}|}}{{\sqrt{1+{k^2}}}}={d_1}£¼2$£¬
¡àl2ÓëÔ²C2Ïཻ£¬
¡ßÁ½Ô²µÄ°ë¾¶ÏàµÈ£¬¶øÁ½ÏÒÐľàÏàµÈ£¬
¡àËù½ØµÃµÄÏÒ³¤ÏàµÈ£®
£¨3£©ÉèQ£¨a£¬b£©?3µÄ·½³ÌΪy=m£¨x-a£©+b£®l4µÄ·½³ÌΪ$y=\frac{1}{m}£¨x-a£©+b$£¬
ÒÀÌâÒâÔ²C1µÄÔ²Ðĵ½l3µÄ¾àÀëΪ${d_3}=\frac{{|{1-b+m£¨a+2£©}|}}{{\sqrt{1+{m^2}}}}$£¬${d_4}=\frac{{|{4-b-\frac{1}{m}£¨3-a£©}|}}{{\sqrt{1+\frac{1}{m^2}}}}=\frac{{|{a-3+m£¨4-b£©}|}}{{\sqrt{1+{m^2}}}}$
ÓÉd3=d4µÃ|1-b+m£¨a+2£©|=|a-3+m£¨4-b£©|¡à1-b+m£¨a+2£©=a-3+m£¨4-b£©£¨1£©
»ò1-b+m£¨a+2£©=3-a+m£¨b-4£©£¨2£©
£¨1£©£¨2£©¶ÔÓÚÎÞÊý¶à¸ömµÄÖµ¶¼³ÉÁ¢¡à$\left\{\begin{array}{l}1-b=a-3\\ a+2=4-b\end{array}\right.$£¨3£©»ò$\left\{\begin{array}{l}1-b=3-a\\ a+2=b-4\end{array}\right.$£¨4£©
£¨3£©£¨4£©¶¼ÎÞ½â¡àQ²»´æÔÚ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÔ²µÄ·½³Ì£¬¿¼²éÖ±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÄѶȴó£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $-\sqrt{3}$ | B£® | $\sqrt{3}$ | C£® | $-\frac{{\sqrt{3}}}{3}$ | D£® | $\frac{{\sqrt{3}}}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1+i | B£® | 1 | C£® | $\sqrt{2}$ | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1Ìõ | B£® | 2Ìõ | C£® | 3Ìõ | D£® | 4Ìõ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com