7£®ÒÑÖªÔ²C1£º£¨x+2£©2+£¨y-1£©2=4ÓëÔ²C2£º£¨x-3£©2+£¨y-4£©2=4£¬¹ýµãP£¨-1£¬5£©×÷Á½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïßl1£ºy=k£¨x+1£©+5£¬l2£ºy=-$\frac{1}{k}$£¨x+1£©+5£®
£¨1£©Èôk=2ʱ£¬Éèl1ÓëÔ²C1½»ÓÚA¡¢BÁ½µã£¬Çó¾­¹ýA¡¢BÁ½µãÃæ»ý×îСµÄÔ²µÄ·½³Ì£®
£¨2£©Èôl1ÓëÔ²C1Ïཻ£¬ÇóÖ¤£ºl2ÓëÔ²C2Ïཻ£¬ÇÒl1±»Ô²C1½ØµÃµÄÏÒ³¤Óël2±»Ô²C2½ØµÃµÄÏÒ³¤ÏàµÈ£®
£¨3£©ÊÇ·ñ´æÔÚµãQ£¬¹ýQµÄÎÞÊý¶à¶ÔбÂÊÖ®»ýΪ1µÄÖ±Ïßl3£¬l4£¬l3±»Ô²C1½ØµÃµÄÏÒ³¤Óël4±»Ô²C2½ØµÃµÄÏÒ³¤ÏàµÈ£®Èô´æÔÚÇóQµÄ×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©¾­¹ýA¡¢BÁ½µãÃæ»ý×îСµÄÔ²Ó¦ÊÇÒÔABΪֱ¾¶µÄÔ²£»
£¨2£©Ö¤Ã÷l2ÓëÔ²C2Ïཻ£¬ÀûÓÃÁ½Ô²µÄ°ë¾¶ÏàµÈ£¬¶øÁ½ÏÒÐľàÏàµÈ£¬¿ÉµÃËù½ØµÃµÄÏÒ³¤ÏàµÈ£»
£¨3£©ÓÉd3=d4µÃ|1-b+m£¨a+2£©|=|a-3+m£¨4-b£©|¡à1-b+m£¨a+2£©=a-3+m£¨4-b£©£¨1£©»ò1-b+m£¨a+2£©=3-a+m£¨b-4£©£¨2£©£¬£¨1£©£¨2£©¶ÔÓÚÎÞÊý¶à¸ömµÄÖµ¶¼³ÉÁ¢£®$\left\{\begin{array}{l}1-b=a-3\\ a+2=4-b\end{array}\right.$£¨3£©»ò$\left\{\begin{array}{l}1-b=3-a\\ a+2=b-4\end{array}\right.$£¨4£©£¬£¨3£©£¨4£©¶¼Î޽⣬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©µ±k=2ʱ£¬l1µÄ·½³ÌΪy=2x+7
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{£¨x+2£©^2}+{£¨y-1£©^2}=4\\ y=2x+7\end{array}\right.$£¬ÕûÀíµÃ5x2+28x+36=0
ÉèA¡¢BΪA£¨x1£¬y1£©£¬B£¨x2£¬y2£©¡à${x_1}+{x_2}=-\frac{28}{5}$£¬${x_1}{x_2}=\frac{36}{5}$£¬${y_1}+{y_2}=\frac{14}{5}$£¬${y_1}{y_2}=-\frac{3}{5}$£¬
¾­¹ýA¡¢BÁ½µãÃæ»ý×îСµÄÔ²Ó¦ÊÇÒÔABΪֱ¾¶µÄÔ²£¬
Ô²µÄ·½³ÌΪ£¨x-x1£©£¨x-x2£©+£¨y-y1£©£¨y-y2£©=0£®
¼´x2+y2-£¨x1+x2£©x-£¨y1+y2£©y+x1x2+y1y2=0
ËùÇóÔ²µÄ·½³Ì£º${x^2}+{y^2}+\frac{28}{5}x-\frac{14}{5}y+\frac{33}{5}=0$¡­£¨4·Ö£©
£¨2£©ÉèÔ²C1µÄÔ²Ðĵ½l1µÄ¾àÀëΪd1£¬Ô²C2µÄÔ²Ðĵ½l2µÄ¾àÀëΪd2£¬Ôò${d_1}=\frac{{|{k-4}|}}{{\sqrt{1+{k^2}}}}£¼2$${d_2}=\frac{{|{\frac{4}{k}-1}|}}{{\sqrt{1+\frac{1}{k_2}}}}=\frac{{|{k-4}|}}{{\sqrt{1+{k^2}}}}={d_1}£¼2$£¬
¡àl2ÓëÔ²C2Ïཻ£¬
¡ßÁ½Ô²µÄ°ë¾¶ÏàµÈ£¬¶øÁ½ÏÒÐľàÏàµÈ£¬
¡àËù½ØµÃµÄÏÒ³¤ÏàµÈ£®
£¨3£©ÉèQ£¨a£¬b£©?3µÄ·½³ÌΪy=m£¨x-a£©+b£®l4µÄ·½³ÌΪ$y=\frac{1}{m}£¨x-a£©+b$£¬
ÒÀÌâÒâÔ²C1µÄÔ²Ðĵ½l3µÄ¾àÀëΪ${d_3}=\frac{{|{1-b+m£¨a+2£©}|}}{{\sqrt{1+{m^2}}}}$£¬${d_4}=\frac{{|{4-b-\frac{1}{m}£¨3-a£©}|}}{{\sqrt{1+\frac{1}{m^2}}}}=\frac{{|{a-3+m£¨4-b£©}|}}{{\sqrt{1+{m^2}}}}$
ÓÉd3=d4µÃ|1-b+m£¨a+2£©|=|a-3+m£¨4-b£©|¡à1-b+m£¨a+2£©=a-3+m£¨4-b£©£¨1£©
»ò1-b+m£¨a+2£©=3-a+m£¨b-4£©£¨2£©
£¨1£©£¨2£©¶ÔÓÚÎÞÊý¶à¸ömµÄÖµ¶¼³ÉÁ¢¡à$\left\{\begin{array}{l}1-b=a-3\\ a+2=4-b\end{array}\right.$£¨3£©»ò$\left\{\begin{array}{l}1-b=3-a\\ a+2=b-4\end{array}\right.$£¨4£©
£¨3£©£¨4£©¶¼ÎÞ½â¡àQ²»´æÔÚ¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÔ²µÄ·½³Ì£¬¿¼²éÖ±ÏßÓëÔ²µÄλÖùØÏµ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÄѶȴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈôµãPÔÚ$-\frac{4}{3}¦Ð$½ÇµÄÖÕ±ßÉÏ£¬ÇÒPµÄ×ø±êΪ£¨-1£¬y£©£¬ÔòyµÈÓÚ£¨¡¡¡¡£©
A£®$-\sqrt{3}$B£®$\sqrt{3}$C£®$-\frac{{\sqrt{3}}}{3}$D£®$\frac{{\sqrt{3}}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª¡÷ABCÖУ¬ÄÚ½ÇA¡¢B¡¢CµÄ¶Ô±ß·Ö±ðÊÇa¡¢b¡¢c£¬a=1£¬c=$\sqrt{3}$£¬¡ÏA=30¡ã£¬ÔòbµÈÓÚ1»ò2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÉèÃüÌâp£º?x¡ÊR£¬x2-2£¨m-3£©x+1=0£¬ÃüÌâq£º?x¡ÊR£¬x2-2£¨m+5£©x+3m+19¡Ù0
£¨1£©Èôp¡ÅqÎªÕæÃüÌ⣬ÇÒp¡ÄqΪ¼ÙÃüÌ⣬ÇóʵÊýmµÄȡֵ·¶Î§
£¨2£©Èôp¡ÄqΪ¼ÙÃüÌ⣬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖª¼¯ºÏM={f£¨x£©|f2£¨x£©-f2£¨y£©=f£¨x+y£©f£¨x-y£©£¬x£¬y¡ÊR}£¬ÓÐÏÂÁÐÃüÌâ
¢ÙÈôf£¨x£©=$\left\{\begin{array}{l}{1£¬x¡Ý0}\\{-1£¬x£¼0}\end{array}\right.$£¬Ôòf£¨x£©¡ÊM£»
¢ÚÈôf£¨x£©=2x£¬Ôòf£¨x£©¡ÊM£»
¢Ûf£¨x£©¡ÊM£¬Ôòy=f£¨x£©µÄͼÏó¹ØÓÚÔ­µã¶Ô³Æ£»
¢Üf£¨x£©¡ÊM£¬Ôò¶ÔÓÚÈÎÒâʵÊýx1£¬x2£¨x1¡Ùx2£©£¬×ÜÓÐ$\frac{{f}_{\;}£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¼0³ÉÁ¢£»
ÆäÖÐËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ¢Ú¢Û£®£¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=$\frac{ax+b}{x+1}$ÔÚ£¨-1£¬+¡Þ£©ÊÇÔöº¯Êý£®
£¨1£©µ±b=1ʱ£¬ÇóaµÄȡֵ·¶Î§£®
£¨2£©Èôg£¨x£©=f£¨x£©-1008ûÓÐÁãµã£¬f£¨1£©=0£¬Çóf£¨-3£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªiΪÐéÊýµ¥Î»£¬Ôò?$\frac{-2i}{1+i}$?=£¨¡¡¡¡£©
A£®1+iB£®1C£®$\sqrt{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®É踴ÊýzÂú×㣨z+i£©i=-3+4i£¨iΪÐéÊýµ¥Î»£©£¬ÔòzµÄģΪ$2\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®¹ýË«ÇúÏß$\frac{x^2}{4}$-$\frac{y^2}{2}$=1µÄÓÒ½¹µãF×÷Ö±Ïßl½»Ë«ÇúÏßÓÚA?BÁ½µã£¬Èô|AB|=5£¬ÔòÕâÑùµÄÖ±ÏßlÓУ¨¡¡¡¡£©
A£®1ÌõB£®2ÌõC£®3ÌõD£®4Ìõ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸