精英家教网 > 高中数学 > 题目详情
2.已知集合M={f(x)|f2(x)-f2(y)=f(x+y)f(x-y),x,y∈R},有下列命题
①若f(x)=$\left\{\begin{array}{l}{1,x≥0}\\{-1,x<0}\end{array}\right.$,则f(x)∈M;
②若f(x)=2x,则f(x)∈M;
③f(x)∈M,则y=f(x)的图象关于原点对称;
④f(x)∈M,则对于任意实数x1,x2(x1≠x2),总有$\frac{{f}_{\;}({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立;
其中所有正确命题的序号是②③.(写出所有正确命题的序号)

分析 逐项判断即可.①分别讨论x,y的符号,代入条件等式一判断;②直接代入检验即可;③利用赋值法可得;④举反例即可判断.

解答 解:①若x=3,y=1,则f2(x)-f2(y)=1-1=0,f(x+y)f(x-y)=f(4)f(2)=1,不满足集合条件,故f(x)∉M,故①错误;
②由f(x)=2x得:f2(x)-f2(y)=4x2-4y2,f(x+y)f(x-y)=2(x+y)•2(x-y)=4x2-4y2,满足等式,故f(x)∈M,故②正确;
③由题意知,函数f(x)满足f2(x)-f2(y)=f(x+y)f(x-y),令x=y=0得:f(0)=0;再令x=0得:-f2(y)=f(y)f(-y),即有f(y)[f(y)+f(-y)]=0,所以f(y)=0或f(-y)=-f(y),当f(y)=0时,函数图象关于原点对称,当f(-y)=-f(y)时,函数为奇函数,图象也关于原点对称,故③正确;④取f(x)=-x,因为f2(x)-f2(y)=x2-y2,f(x+y)f(x-y)=-(x+y)(y-x)=x2-y2,所以f(x)∈M,而f(x)=-x为减函数,故④错误.
综上可得:②③正确.
故答案为:②③.

点评 本题是一道创新题,解题关键在于正确理解集合M中元素所满足的关系,考查了分析问题和解决问题的能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知矩阵M=$|\begin{array}{l}{2}&{3}\\{a}&{1}\end{array}|$的一个特征值为4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{3}$sinωx-cosωx+m(ω>0,x∈R,m是常数)的图象上的一个最高点$(\frac{π}{3},1)$,且与点$(\frac{π}{3},1)$最近的一个最低点是$(-\frac{π}{6},-3)$.
(Ⅰ)求函数f(x)的解析式及其单调递增区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,且$\overrightarrow{AB}•\overrightarrow{BC}=-\frac{1}{2}$ac,求函数f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={a2,a+1,-3},B={a-3,a2+1,2a-1}若A∩B={-3},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l的方程为x=-2,且直线l与x轴交于点M,圆O:x2+y2=1与x轴交于A,B两点.
(1)过M点的直线l1交圆于P、Q两点,且圆孤PQ恰为圆周的$\frac{1}{4}$,求直线l1的方程;
(2)若椭圆中a,c满足$\frac{a^2}{c}$=2,求中心在原点,且与圆O恰有两个公共点的椭圆方程;
(3)过M点作直线l2与圆相切于点N,设(2)中椭圆的两个焦点分别为F1,F2,求三角形△NF1F2面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C1:(x+2)2+(y-1)2=4与圆C2:(x-3)2+(y-4)2=4,过点P(-1,5)作两条互相垂直的直线l1:y=k(x+1)+5,l2:y=-$\frac{1}{k}$(x+1)+5.
(1)若k=2时,设l1与圆C1交于A、B两点,求经过A、B两点面积最小的圆的方程.
(2)若l1与圆C1相交,求证:l2与圆C2相交,且l1被圆C1截得的弦长与l2被圆C2截得的弦长相等.
(3)是否存在点Q,过Q的无数多对斜率之积为1的直线l3,l4,l3被圆C1截得的弦长与l4被圆C2截得的弦长相等.若存在求Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆心坐标为$(1,\sqrt{3})$的圆M与y轴及直线y=$\frac{{\sqrt{3}}}{3}$x相切于A、B两点,另一圆N1与圆M外切(圆N1在圆M的斜上方),且与y轴及直线y=$\frac{{\sqrt{3}}}{3}$x分别切于C、D两点.(如图)
(1)求圆N1的方程.
(2)求线段AC的长.
(3)仿N1作一系列圆Nk(k≥2)圆Nk与圆Nk-1外切,(圆Nk在圆Nk-1的斜上方)与y轴及y=$\frac{{\sqrt{3}}}{3}$x相切,圆Nk的圆心坐标为(xk,yk),求数列{xk}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=2sinx(sinx+cosx),x∈R.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若$f(\frac{a}{2})$=1+$\frac{{3\sqrt{2}}}{5},\frac{3π}{4}$<a<$\frac{5π}{4}$,求cosa的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.2013年4月初眉山市“体彩杯”中小学生田径运动会圆满落幕,市文体局举行表彰大会.某校有男运动员6名,女运动员4名,其中男女队长各1人,从中选5人参加表彰会,下列情形各有多少种选派方法(结果用数字作答).
(1)男3名,女2名                 
(2)队长至少有1人参加
(3)至少1名女运动员              
(4)既要有队长,又要有女运动员.

查看答案和解析>>

同步练习册答案