精英家教网 > 高中数学 > 题目详情
11.已知f(x)=2sinx(sinx+cosx),x∈R.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若$f(\frac{a}{2})$=1+$\frac{{3\sqrt{2}}}{5},\frac{3π}{4}$<a<$\frac{5π}{4}$,求cosa的值.

分析 (Ⅰ)利用三角恒等变换化简函数的解析式,再利用正弦函数的单调性求得函数f(x)的单调递增区间.
(Ⅱ)根据$f(\frac{a}{2})$=1+$\sqrt{2}$sin(a-$\frac{π}{4}$)=1+$\frac{3\sqrt{2}}{5}$,求得sin(a-$\frac{π}{4}$) 的值,可得cos(a-$\frac{π}{4}$) 的值,再根据 cosa=cos[(a-$\frac{π}{4}$)+$\frac{π}{4}$],利用两角和的余弦公式计算求得结果.

解答 解:(Ⅰ)∵f(x)=2sinx(sinx+cosx)=2sin2x+2sinxcosx
=2•$\frac{1-cos2x}{2}$+sin2x=1+sin2x-cos2x=1+$\sqrt{2}$sin(2x-$\frac{π}{4}$),
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,
可得函数的增区间为[kπ-$\frac{π}{8}$,kπ+$\frac{3π}{8}$]k∈Z.
(Ⅱ)∵$f(\frac{a}{2})$=1+$\sqrt{2}$sin(a-$\frac{π}{4}$)=1+$\frac{3\sqrt{2}}{5}$,∴sin(a-$\frac{π}{4}$)=$\frac{3}{5}$,$\frac{π}{2}$<a-$\frac{π}{4}$<π,
∴cos(a-$\frac{π}{4}$)=-$\sqrt{{1-sin}^{2}(a-\frac{π}{4})}$=-$\frac{4}{5}$,
∴cosa=cos[(a-$\frac{π}{4}$)+$\frac{π}{4}$]=cos(a-$\frac{π}{4}$)cos$\frac{π}{4}$-sin (a-$\frac{π}{4}$)sin$\frac{π}{4}$
=-$\frac{4}{5}$•$\frac{\sqrt{2}}{2}$-$\frac{3}{5}•\frac{\sqrt{2}}{2}$=-$\frac{7\sqrt{2}}{10}$.

点评 本题主要考查三角恒等变换、正弦函数的单调性,同角三角函数的基本关系,两角和的余弦公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.记f(x)=2|x|,a=f$({{{log}_{\frac{1}{3}}}4}),b=f({{{log}_2}5}$),c=f(0),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合M={f(x)|f2(x)-f2(y)=f(x+y)f(x-y),x,y∈R},有下列命题
①若f(x)=$\left\{\begin{array}{l}{1,x≥0}\\{-1,x<0}\end{array}\right.$,则f(x)∈M;
②若f(x)=2x,则f(x)∈M;
③f(x)∈M,则y=f(x)的图象关于原点对称;
④f(x)∈M,则对于任意实数x1,x2(x1≠x2),总有$\frac{{f}_{\;}({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立;
其中所有正确命题的序号是②③.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i为虚数单位,则?$\frac{-2i}{1+i}$?=(  )
A.1+iB.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)是偶函数f(x)(x∈R)的导函数,当x≠0时,但有xf′(x)>0,记a=f(log0.53),b=f(log25),c=f(log32),则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设复数z满足(z+i)i=-3+4i(i为虚数单位),则z的模为$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{a}{x}$+bx(其中a,b为常数)的图象经过(1,3)、(2,3)两点.
( I)求a,b的值,判断并证明函数f(x)的奇偶性;
( II)证明:函数f(x)在区间[$\sqrt{2}$,+∞)上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知两个不同的平面α、β和两条不重合的直线,m、n,有下列四个命题
①若m∥n,m⊥α,则n⊥α②若m⊥α,m⊥β,则α∥β
③若m⊥α,n∥α,则m⊥n④若m∥α,m∥β,α∩β=n,则m∥n
其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图为某几何体的三视图,则该几何体的表面积为6+$\sqrt{6}$.

查看答案和解析>>

同步练习册答案