精英家教网 > 高中数学 > 题目详情
1.记f(x)=2|x|,a=f$({{{log}_{\frac{1}{3}}}4}),b=f({{{log}_2}5}$),c=f(0),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

分析 由于a=${2}^{lo{g}_{3}4}$∈(2,4),b=${2}^{lo{g}_{2}5}$=5,c=f(0)=1,即可得出大小关系.

解答 解:a=${2}^{lo{g}_{3}4}$∈(2,4),b=${2}^{lo{g}_{2}5}$=5,c=f(0)=1,
则a,b,c的大小关系为c<a<b.
故选:B.

点评 本题考查了函数的单调性、指数与对数的运算性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设曲线C:$\frac{{x}^{2}}{m+2}$-$\frac{{y}^{2}}{{m}^{2}-9}$=1,则“m>3”是“曲线C为双曲线”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知矩阵M=$|\begin{array}{l}{2}&{3}\\{a}&{1}\end{array}|$的一个特征值为4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知log2b<log2a<log2c,则(  )
A.($\frac{1}{2}$)b>($\frac{1}{2}$)a>($\frac{1}{2}$)cB.($\frac{1}{2}$)a>($\frac{1}{2}$)b>($\frac{1}{2}$)cC.($\frac{1}{2}$)c>($\frac{1}{2}$)b>($\frac{1}{2}$)aD.($\frac{1}{2}$)c>($\frac{1}{2}$)a>($\frac{1}{2}$)b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a<0,关于x的一元二次不等式ax2-(2+a)x+2>0的解集为(  )
A.{x|x<$\frac{2}{a}$或x>1}B.{x|$\frac{2}{a}$<x<1}C.{x|x<1或x>$\frac{2}{a}$}D.{x|1<x<$\frac{2}{a}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设等差数列{an}的前n项和为Sn,$\overrightarrow a=({a_1},1),\overrightarrow b=(1,{a_{10}})$,若$\overrightarrow a•\overrightarrow b=24$,且S11=143,数列{bn}的前n项和为Tn,且满足${2^{{a_n}-1}}=λ{T_n}-({a_1}-1)(n∈{N^*})$.
(Ⅰ)求数列{an}的通项公式及数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Mn
(Ⅱ)是否存在非零实数λ,使得数列{bn}为等比数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{3}$sinωx-cosωx+m(ω>0,x∈R,m是常数)的图象上的一个最高点$(\frac{π}{3},1)$,且与点$(\frac{π}{3},1)$最近的一个最低点是$(-\frac{π}{6},-3)$.
(Ⅰ)求函数f(x)的解析式及其单调递增区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,且$\overrightarrow{AB}•\overrightarrow{BC}=-\frac{1}{2}$ac,求函数f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={a2,a+1,-3},B={a-3,a2+1,2a-1}若A∩B={-3},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=2sinx(sinx+cosx),x∈R.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若$f(\frac{a}{2})$=1+$\frac{{3\sqrt{2}}}{5},\frac{3π}{4}$<a<$\frac{5π}{4}$,求cosa的值.

查看答案和解析>>

同步练习册答案