精英家教网 > 高中数学 > 题目详情
6.设等差数列{an}的前n项和为Sn,$\overrightarrow a=({a_1},1),\overrightarrow b=(1,{a_{10}})$,若$\overrightarrow a•\overrightarrow b=24$,且S11=143,数列{bn}的前n项和为Tn,且满足${2^{{a_n}-1}}=λ{T_n}-({a_1}-1)(n∈{N^*})$.
(Ⅰ)求数列{an}的通项公式及数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Mn
(Ⅱ)是否存在非零实数λ,使得数列{bn}为等比数列?并说明理由.

分析 (Ⅰ)设数列{an}的公差为d,利用数量积运算性质可得:a1+a10=24,又S11=143,解得a1,d,可得数列的通项公式,再利用“裂项求和”方法即可得出.
(Ⅱ)由${2^{{a_n}-1}}=λ{T_n}-({a_1}-1)(n∈{N^*})$,且a1=3,可得${T_n}=\frac{1}{λ}{4^n}+\frac{2}{λ}$,对n分类讨论,利用等比数列的定义即可得出.

解答 解:(Ⅰ)设数列{an}的公差为d,由$\overrightarrow a=({a_1},1),\overrightarrow b=(1,{a_{10}})$,$\overrightarrow a•\overrightarrow b=24$,
∴a1+a10=24,又S11=143,
解得a1=3,d=2,因此数列的通项公式是${a_n}=2n+1(n∈{N^*})$,
∴$\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{2}({\frac{1}{2n+1}-\frac{1}{2n+3}})$,
∴${M_n}=\frac{1}{2}({\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2n+1}-\frac{1}{2n+3}})=\frac{n}{6n+9}$.
(Ⅱ)∵${2^{{a_n}-1}}=λ{T_n}-({a_1}-1)(n∈{N^*})$,且a1=3,可得${T_n}=\frac{1}{λ}{4^n}+\frac{2}{λ}$,
当n=1时,${b_1}=\frac{6}{λ}$;
当n≥2时,${b_n}={T_n}-{T_{n-1}}=\frac{3}{λ}{4^{n-1}}$,此时有$\frac{b_n}{{{b_{n-1}}}}=4$,
若是{bn}等比数列,则有有$\frac{b_2}{b_1}=4$,而${b_1}=\frac{6}{λ}$,${b_2}=\frac{12}{λ}$,彼此相矛盾,
故不存在非零实数,使数列为等比数列.

点评 本题考查了等差数列与等比数列的定义与通项公式、“裂项求和”方法、向量的数量积运算性质,考查了分类讨论、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.
(1)证明:B1M⊥平面ABM;
(2)求异面直线A1M和C1D1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若点P在$-\frac{4}{3}π$角的终边上,且P的坐标为(-1,y),则y等于(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中,正确的是(  )
A.若a>b,c>d,则ac>bdB.若ac>bc,则a>b
C.若a>b,则$\frac{1}{a}<\frac{1}{b}$D.若a>b,c<d,则a-c>b-d

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.记f(x)=2|x|,a=f$({{{log}_{\frac{1}{3}}}4}),b=f({{{log}_2}5}$),c=f(0),则a,b,c的大小关系为(  )
A.a<b<cB.c<a<bC.a<c<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.对于函数f(x)与g(x)和区间D,如果存在x0∈D,使|f(x0)-g(x0)|≤1,则称x0是函数f(x)与g(x)在区间D上的“友好点”.现给出两个函数:
①f(x)=x2,g(x)=2x-2;②$f(x)=\sqrt{x}$,g(x)=x+2;
③f(x)=e-x,$g(x)=-\frac{1}{x}$;④f(x)=lnx,g(x)=x.
则在区间(0,+∞)上存在唯一“友好点”的是①④.(填上所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC中,内角A、B、C的对边分别是a、b、c,a=1,c=$\sqrt{3}$,∠A=30°,则b等于1或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设命题p:?x∈R,x2-2(m-3)x+1=0,命题q:?x∈R,x2-2(m+5)x+3m+19≠0
(1)若p∨q为真命题,且p∧q为假命题,求实数m的取值范围
(2)若p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设复数z满足(z+i)i=-3+4i(i为虚数单位),则z的模为$2\sqrt{5}$.

查看答案和解析>>

同步练习册答案