精英家教网 > 高中数学 > 题目详情
18.已知△ABC中,内角A、B、C的对边分别是a、b、c,a=1,c=$\sqrt{3}$,∠A=30°,则b等于1或2.

分析 由已知及余弦定理可得b2-3b+2=0,进而可解得b的值.

解答 解:∵a=1,c=$\sqrt{3}$,∠A=30°,
∴由余弦定理a2=b2+c2-2bccosA,可得:1=b2+3-2×b×$\sqrt{3}×\frac{\sqrt{3}}{2}$,整理可得:b2-3b+2=0,
∴解得:b=1或2.
故答案为:1或2.

点评 本题主要考查了余弦定理在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=3|x|+log3|x|.
(1)判断函数的奇偶性,并加以证明;
(2)说明函数f(x)在(0,+∞)上的单调性,并利用单调性定义证明;
(3)若 f(2a)<28,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知log2b<log2a<log2c,则(  )
A.($\frac{1}{2}$)b>($\frac{1}{2}$)a>($\frac{1}{2}$)cB.($\frac{1}{2}$)a>($\frac{1}{2}$)b>($\frac{1}{2}$)cC.($\frac{1}{2}$)c>($\frac{1}{2}$)b>($\frac{1}{2}$)aD.($\frac{1}{2}$)c>($\frac{1}{2}$)a>($\frac{1}{2}$)b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设等差数列{an}的前n项和为Sn,$\overrightarrow a=({a_1},1),\overrightarrow b=(1,{a_{10}})$,若$\overrightarrow a•\overrightarrow b=24$,且S11=143,数列{bn}的前n项和为Tn,且满足${2^{{a_n}-1}}=λ{T_n}-({a_1}-1)(n∈{N^*})$.
(Ⅰ)求数列{an}的通项公式及数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和Mn
(Ⅱ)是否存在非零实数λ,使得数列{bn}为等比数列?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{3}$sinωx-cosωx+m(ω>0,x∈R,m是常数)的图象上的一个最高点$(\frac{π}{3},1)$,且与点$(\frac{π}{3},1)$最近的一个最低点是$(-\frac{π}{6},-3)$.
(Ⅰ)求函数f(x)的解析式及其单调递增区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,且$\overrightarrow{AB}•\overrightarrow{BC}=-\frac{1}{2}$ac,求函数f(A)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC中,AC=$\sqrt{3}$,AB=2,∠B=60°,则BC=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={a2,a+1,-3},B={a-3,a2+1,2a-1}若A∩B={-3},求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C1:(x+2)2+(y-1)2=4与圆C2:(x-3)2+(y-4)2=4,过点P(-1,5)作两条互相垂直的直线l1:y=k(x+1)+5,l2:y=-$\frac{1}{k}$(x+1)+5.
(1)若k=2时,设l1与圆C1交于A、B两点,求经过A、B两点面积最小的圆的方程.
(2)若l1与圆C1相交,求证:l2与圆C2相交,且l1被圆C1截得的弦长与l2被圆C2截得的弦长相等.
(3)是否存在点Q,过Q的无数多对斜率之积为1的直线l3,l4,l3被圆C1截得的弦长与l4被圆C2截得的弦长相等.若存在求Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx-$\frac{1}{x}$,g(x)=-ax+b.
(I)讨论函数h(x)=f(x)-g(x)单调区间;
(II)若直线g(x)=-ax+b是函数f(x)=lnx-$\frac{1}{x}$图象的切线,求b-a的最小值.

查看答案和解析>>

同步练习册答案