17£®ÒÑÖªÖ±ÏßlµÄ·½³ÌΪx=-2£¬ÇÒÖ±ÏßlÓëxÖá½»ÓÚµãM£¬Ô²O£ºx2+y2=1ÓëxÖá½»ÓÚA£¬BÁ½µã£®
£¨1£©¹ýMµãµÄÖ±Ïßl1½»Ô²ÓÚP¡¢QÁ½µã£¬ÇÒÔ²¹ÂPQǡΪԲÖܵÄ$\frac{1}{4}$£¬ÇóÖ±Ïßl1µÄ·½³Ì£»
£¨2£©ÈôÍÖÔ²ÖÐa£¬cÂú×ã$\frac{a^2}{c}$=2£¬ÇóÖÐÐÄÔÚÔ­µã£¬ÇÒÓëÔ²OÇ¡ÓÐÁ½¸ö¹«¹²µãµÄÍÖÔ²·½³Ì£»
£¨3£©¹ýMµã×÷Ö±Ïßl2ÓëÔ²ÏàÇÐÓÚµãN£¬É裨2£©ÖÐÍÖÔ²µÄÁ½¸ö½¹µã·Ö±ðΪF1£¬F2£¬ÇóÈý½ÇÐΡ÷NF1F2Ãæ»ý£®

·ÖÎö £¨1£©ÓÉPQΪԲÖܵÄ$\frac{1}{4}$£¬¿ÉµÃ$¡ÏPOQ=\frac{¦Ð}{2}$£®Oµãµ½Ö±Ïßl1µÄ¾àÀëΪ$\frac{{\sqrt{2}}}{2}$£®¡­£¨2·Ö£©ÔÙÀûÓõ㵽ֱÏߵľàÀ빫ʽ¼´¿ÉµÃ³ö£®
£¨2£©ÉèÍÖÔ²·½³ÌΪ$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$£¬°ë½¹¾àΪc£¬Ôò$\frac{a^2}{c}=2$£¬ÀûÓÃÍÖÔ²ÓëÔ²µÄ¶Ô³ÆÐÔÖʼ´¿ÉµÃ³ö£®
£¨3£©ÉèÇеãΪN£¬ÔòÓÉÌâÒâµÃ£¬ÔÚRt¡÷MONÖУ¬MO=2£¬ON=1£¬Ôò¡ÏNMO=30¡ã£¬NµãµÄ×ø±êΪ$£¨-\frac{1}{2}£¬\frac{{\sqrt{3}}}{2}£©$£¬ÔÙÀûÓÃÈý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ßPQΪԲÖܵÄ$\frac{1}{4}$£¬¡à$¡ÏPOQ=\frac{¦Ð}{2}$£®¡àOµãµ½Ö±Ïßl1µÄ¾àÀëΪ$\frac{{\sqrt{2}}}{2}$£®¡­£¨2·Ö£©
Éèl1µÄ·½³ÌΪy=k£¨x+2£©£¬¡à$\frac{|2k|}{{\sqrt{{k^2}+1}}}=\frac{{\sqrt{2}}}{2}$£¬¡à${k^2}=\frac{1}{7}$£®¡àl1µÄ·½³ÌΪ$y=¡À\frac{{\sqrt{7}}}{7}£¨x+2£©$£®¡­£¨5·Ö£©
£¨2£©ÉèÍÖÔ²·½³ÌΪ$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$£¬°ë½¹¾àΪc£¬Ôò$\frac{a^2}{c}=2$£®¡ßÍÖÔ²ÓëÔ²OÇ¡ÓÐÁ½¸ö²»Í¬µÄ¹«¹²µã£¬¸ù¾ÝÍÖÔ²ÓëÔ²µÄ¶Ô³ÆÐÔ
Ôòa=1»òb=1£®¡­£¨6·Ö£©
µ±a=1ʱ£¬$c=\frac{1}{2}£¬{b^2}={a^2}-{c^2}=\frac{3}{4}$£¬¡àËùÇóÍÖÔ²·½³ÌΪ${x^2}+\frac{{4{y^2}}}{3}=1$£»¡­£¨8·Ö£©
µ±b=1ʱ£¬b2+c2=2c£¬¡àc=1£¬¡àa2=b2+c2=2£®
ËùÇóÍÖÔ²·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$£®¡­£¨10·Ö£©
£¨3£©ÉèÇеãΪN£¬ÔòÓÉÌâÒâµÃ£¬ÔÚRt¡÷MONÖУ¬MO=2£¬ON=1£¬Ôò¡ÏNMO=30¡ã£¬
NµãµÄ×ø±êΪ$£¨-\frac{1}{2}£¬\frac{{\sqrt{3}}}{2}£©$£¬¡­£¨11·Ö£©
ÈôÍÖԲΪ$\frac{x^2}{2}+{y^2}=1$£®Æä½¹µãF1£¬F2
·Ö±ðΪµãA£¬B¹Ê${S_{¡÷N{F_1}{F_2}}}=\frac{1}{2}¡Á2¡Á\frac{{\sqrt{3}}}{2}=\frac{{\sqrt{3}}}{2}$£¬¡­£¨13·Ö£©
ÈôÍÖԲΪ${x^2}+\frac{{4{y^2}}}{3}=1$£¬Æä½¹µãΪ${F_1}£¨-\frac{1}{2}£¬0£©£¬{F_2}£¨\frac{1}{2}£¬0£©$£¬
´Ëʱ${S_{¡÷N{F_1}{F_2}}}=\frac{1}{2}¡Á1¡Á\frac{{\sqrt{3}}}{2}=\frac{{\sqrt{3}}}{4}$¡­£¨16·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²ÓëÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ô²µÄÇÐÏßµÄÐÔÖÊ¡¢Èý½ÇÐÎÃæ»ý¼ÆË㹫ʽ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªµãA£¨m£¬-3£©ÔÚÅ×ÎïÏßy2=2px£¨p£¾0£©ÉÏ£¬Ëüµ½Å×ÎïÏß½¹µãFµÄ¾àÀëΪ5£¬ÇómºÍpµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýg£¨x£©=x2-ax+b£¬ÆäͼÏó¶Ô³ÆÖáΪֱÏßx=2£¬ÇÒg£¨x£©µÄ×îСֵΪ-1£¬Éèf£¨x£©=$\frac{g£¨x£©}{x}$£®
£¨1£©ÇóʵÊýa£¬bµÄÖµ£»
£¨2£©Èô²»µÈʽf£¨3x£©-t•3x¡Ý0ÔÚx¡Ê[-2£¬2]ÉϺã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£»
£¨3£©Èô¹ØÓÚxµÄ·½³Ìf£¨|2x-2|£©+k•$\frac{2}{|{2}^{x}-2|}$-3k=0ÓÐÈý¸ö²»Í¬µÄʵÊý½â£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªf£¨x£©=ax2+x-a£®a¡ÊR
£¨1£©Èô²»µÈʽf£¨x£©£¼bµÄ½â¼¯Îª£¨-¡Þ£¬-1£©¡È£¨3£¬+¡Þ£©£¬Çóa£¬bµÄÖµ£»
£¨2£©Èôa£¼0£¬½â²»µÈʽf£¨x£©£¾1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÈçͼµÄα´úÂëÊä³öµÄ½á¹ûSΪ17

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖª¼¯ºÏM={f£¨x£©|f2£¨x£©-f2£¨y£©=f£¨x+y£©f£¨x-y£©£¬x£¬y¡ÊR}£¬ÓÐÏÂÁÐÃüÌâ
¢ÙÈôf£¨x£©=$\left\{\begin{array}{l}{1£¬x¡Ý0}\\{-1£¬x£¼0}\end{array}\right.$£¬Ôòf£¨x£©¡ÊM£»
¢ÚÈôf£¨x£©=2x£¬Ôòf£¨x£©¡ÊM£»
¢Ûf£¨x£©¡ÊM£¬Ôòy=f£¨x£©µÄͼÏó¹ØÓÚÔ­µã¶Ô³Æ£»
¢Üf£¨x£©¡ÊM£¬Ôò¶ÔÓÚÈÎÒâʵÊýx1£¬x2£¨x1¡Ùx2£©£¬×ÜÓÐ$\frac{{f}_{\;}£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¼0³ÉÁ¢£»
ÆäÖÐËùÓÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ¢Ú¢Û£®£¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖª¦È·þ´Ó$[{-\frac{¦Ð}{2}£¬\frac{¦Ð}{2}}]$ÉϵľùÔÈ·Ö²¼£¬Ôò2|sin¦È|£¼$\sqrt{3}$³ÉÁ¢µÄ¸ÅÂÊΪ$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®É躯Êýf£¨x£©ÊÇżº¯Êýf£¨x£©£¨x¡ÊR£©µÄµ¼º¯Êý£¬µ±x¡Ù0ʱ£¬µ«ÓÐxf¡ä£¨x£©£¾0£¬¼Ça=f£¨log0.53£©£¬b=f£¨log25£©£¬c=f£¨log32£©£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
A£®a£¼b£¼cB£®a£¼c£¼bC£®c£¼a£¼bD£®c£¼b£¼a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªµãA£¨-1£¬0£©£¬¹ýµãA¿É×÷Ô²x2+y2+mx+1=0µÄÁ½ÌõÇÐÏߣ¬ÔòmµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬-2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸