8£®ÒÑÖªº¯Êýg£¨x£©=x2-ax+b£¬ÆäͼÏó¶Ô³ÆÖáΪֱÏßx=2£¬ÇÒg£¨x£©µÄ×îСֵΪ-1£¬Éèf£¨x£©=$\frac{g£¨x£©}{x}$£®
£¨1£©ÇóʵÊýa£¬bµÄÖµ£»
£¨2£©Èô²»µÈʽf£¨3x£©-t•3x¡Ý0ÔÚx¡Ê[-2£¬2]ÉϺã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£»
£¨3£©Èô¹ØÓÚxµÄ·½³Ìf£¨|2x-2|£©+k•$\frac{2}{|{2}^{x}-2|}$-3k=0ÓÐÈý¸ö²»Í¬µÄʵÊý½â£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©¸ù¾Ýº¯Êýg£¨x£©=x2-ax+b£¬ÆäͼÏó¶Ô³ÆÖáΪֱÏßx=2£¬ÇÒg£¨x£©µÄ×îСֵΪ-1£¬¿ÉµÃʵÊýa£¬bµÄÖµ£»
£¨2£©Èô²»µÈʽf£¨3x£©-t•3x¡Ý0ÔÚx¡Ê[-2£¬2]ÉϺã³ÉÁ¢£¬t¡Ü$3•£¨\frac{1}{{3}^{x}}£©^{2}-4£¨\frac{1}{{3}^{x}}£©+1$ÔÚx¡Ê[-2£¬2]ÉϺã³ÉÁ¢£¬½ø¶øµÃµ½ÊµÊýtµÄȡֵ·¶Î§£»
£¨3£©Èô¹ØÓÚxµÄ·½³Ìf£¨|2x-2|£©+k•$\frac{2}{|{2}^{x}-2|}$-3k=0ÓÐÈý¸ö²»Í¬µÄʵÊý½â£¬Ôò·½³Ìt2-£¨4+3k£©t+£¨3+2k£©=0ÓÐÁ½¸ö¸ù£¬ÆäÖÐÒ»¸öÔÚÇø¼ä£¨0£¬2£©ÉÏ£¬Ò»¸öÔÚÇø¼ä[2£¬+¡Þ£©£¬½ø¶ø¿ÉµÃʵÊýkµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©¡ßº¯Êýg£¨x£©=x2-ax+b£¬ÆäͼÏó¶Ô³ÆÖáΪֱÏßx=2£¬
¡à$\frac{a}{2}$=2£¬
½âµÃ£ºa=4£¬
µ±x=2ʱ£¬º¯ÊýÈ¡×îСֵb-4=-1£¬
½âµÃ£ºb=3£¬
£¨2£©ÓÉ£¨1£©µÃ£ºg£¨x£©=x2-4x+3£¬
f£¨x£©=x-4+$\frac{3}{x}$
Èô²»µÈʽf£¨3x£©-t•3x¡Ý0ÔÚx¡Ê[-2£¬2]ÉϺã³ÉÁ¢£¬
Ôòt¡Ü$3•£¨\frac{1}{{3}^{x}}£©^{2}-4£¨\frac{1}{{3}^{x}}£©+1$ÔÚx¡Ê[-2£¬2]ÉϺã³ÉÁ¢£¬
µ±3x=$\frac{2}{3}$£¬¼´x=log32-1ʱ£¬$3•£¨\frac{1}{{3}^{x}}£©^{2}-4£¨\frac{1}{{3}^{x}}£©+1$È¡×îСֵ-$\frac{1}{3}$£¬
¹Êt¡Ü-$\frac{1}{3}$£¬
£¨3£©Áît=|2x-2|£¬t¡Ý0£¬
ÔòÔ­·½³Ì¿É»¯Îª£ºt+$\frac{3}{t}$-4+$\frac{2k}{t}$-3k=0£¬
¼´t2-£¨4+3k£©t+£¨3+2k£©=0£¬
Èô¹ØÓÚxµÄ·½³Ìf£¨|2x-2|£©+k•$\frac{2}{|{2}^{x}-2|}$-3k=0ÓÐÈý¸ö²»Í¬µÄʵÊý½â£¬
Ôò·½³Ìt2-£¨4+3k£©t+£¨3+2k£©=0ÓÐÁ½¸ö¸ù£¬
ÆäÖÐÒ»¸öÔÚÇø¼ä£¨0£¬2£©ÉÏ£¬Ò»¸öÔÚÇø¼ä[2£¬+¡Þ£©£¬
Áîh£¨t£©=t2-£¨4+3k£©t+£¨3+2k£©£¬
Ôò$\left\{\begin{array}{l}¡÷£¾0\\ h£¨0£©£¾0\\ h£¨2£©¡Ü0\end{array}\right.$£¬
¼´$\left\{\begin{array}{l}£¨4+3k£©^{2}-4£¨3+2k£©£¾0\\ 3+2k£¾0\\ 4-2£¨4+3k£©+£¨3+2k£©¡Ü0\end{array}\right.$£¬
½âµÃ£ºk¡Ê[-$\frac{1}{4}$£¬+¡Þ£©

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǶþ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬º¯Êýºã³ÉÁ¢ÎÊÌ⣬·½³Ì¸ùµÄ¸öÊý£¬×ª»¯Ë¼Ï룬ÄѶÈÖеµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬AA1¡Íµ×ÃæABC£¬AC¡ÍBC£¬AC=BC=$\frac{1}{2}$AA1=2£¬DÊÇACµÄÖе㣮
£¨1£©ÇóÖ¤£ºB1C¡ÎÆ½ÃæA1BD£»
£¨2£©ÇóÖ±ÏßACÓëÆ½ÃæA1BDËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®Ò»¸öÉÈÐÎOABµÄÃæ»ýÊÇ1cm2£¬ËüµÄÖܳ¤ÊÇ4cm£¬ÔòÏÒ³¤AB=£¨¡¡¡¡£©
A£®2B£®2sin 1C£®2sin 2D£®sin 1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªa£¼0£¬¹ØÓÚxµÄÒ»Ôª¶þ´Î²»µÈʽax2-£¨2+a£©x+2£¾0µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®{x|x£¼$\frac{2}{a}$»òx£¾1}B£®{x|$\frac{2}{a}$£¼x£¼1}C£®{x|x£¼1»òx£¾$\frac{2}{a}$}D£®{x|1£¼x£¼$\frac{2}{a}$}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÓÉÖ±Ïßy=1£¬y=2£¬ÇúÏßxy=1¼°yÖáËùΧ³ÉµÄ·â±ÕͼÐεÄÃæ»ýÊÇln2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sin¦Øx-cos¦Øx+m£¨¦Ø£¾0£¬x¡ÊR£¬mÊdz£Êý£©µÄͼÏóÉϵÄÒ»¸ö×î¸ßµã$£¨\frac{¦Ð}{3}£¬1£©$£¬ÇÒÓëµã$£¨\frac{¦Ð}{3}£¬1£©$×î½üµÄÒ»¸ö×îµÍµãÊÇ$£¨-\frac{¦Ð}{6}£¬-3£©$£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ¼°Æäµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒ$\overrightarrow{AB}•\overrightarrow{BC}=-\frac{1}{2}$ac£¬Çóº¯Êýf£¨A£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªµÈ²îÊýÁÐ{an}ÖУ¬a1+a4=10£¬a3=6£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Èô${b_n}=\frac{4}{{{a_n}•{a_{n+1}}}}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÖ±ÏßlµÄ·½³ÌΪx=-2£¬ÇÒÖ±ÏßlÓëxÖá½»ÓÚµãM£¬Ô²O£ºx2+y2=1ÓëxÖá½»ÓÚA£¬BÁ½µã£®
£¨1£©¹ýMµãµÄÖ±Ïßl1½»Ô²ÓÚP¡¢QÁ½µã£¬ÇÒÔ²¹ÂPQǡΪԲÖܵÄ$\frac{1}{4}$£¬ÇóÖ±Ïßl1µÄ·½³Ì£»
£¨2£©ÈôÍÖÔ²ÖÐa£¬cÂú×ã$\frac{a^2}{c}$=2£¬ÇóÖÐÐÄÔÚÔ­µã£¬ÇÒÓëÔ²OÇ¡ÓÐÁ½¸ö¹«¹²µãµÄÍÖÔ²·½³Ì£»
£¨3£©¹ýMµã×÷Ö±Ïßl2ÓëÔ²ÏàÇÐÓÚµãN£¬É裨2£©ÖÐÍÖÔ²µÄÁ½¸ö½¹µã·Ö±ðΪF1£¬F2£¬ÇóÈý½ÇÐΡ÷NF1F2Ãæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®É躯Êýf£¨x£©=ln£¨1-x£©-ln£¨1+x£©£¬Ôòf£¨x£©ÊÇ£¨¡¡¡¡£©
A£®Ææº¯Êý£¬ÇÒÔÚ£¨0£¬1£©ÉÏÊÇÔöº¯ÊýB£®Ææº¯Êý£¬ÇÒÔÚ£¨0£¬1£©ÉÏÊǼõº¯Êý
C£®Å¼º¯Êý£¬ÇÒÔÚ£¨0£¬1£©ÉÏÊÇÔöº¯ÊýD£®Å¼º¯Êý£¬ÇÒÔÚ£¨0£¬1£©ÉÏÊǼõº¯Êý

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸