精英家教网 > 高中数学 > 题目详情
12.如图的伪代码输出的结果S为17

分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:模拟程序的运行,可得
I=1
满足条件I<8,执行循环体,S=5,I=3
满足条件I<8,执行循环体,S=9,I=5
满足条件I<8,执行循环体,S=13,I=7
满足条件I<8,执行循环体,S=17,I=9
不满足条件I<8,退出循环,输出S的值为17.
故答案为:17.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若椭圆的方程为4x2+9y2-36=0,则其长轴长为(  )
A.3B.4C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.由直线y=1,y=2,曲线xy=1及y轴所围成的封闭图形的面积是ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}中,a1+a4=10,a3=6.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若${b_n}=\frac{4}{{{a_n}•{a_{n+1}}}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,对任意的n∈N*,点(n,Sn)恒在函数y=$\frac{3}{2}{x^2}+\frac{3}{2}$x的图象上.
(1)求数列{an}的通项公式;
(2)记Tn=$\frac{{{a_n}•{a_{n+1}}}}{2^n}$,若对于一切的正整数n,总有Tn≤m成立,求实数m的取值范围;
(3)设Kn为数列{bn}的前n项和,其中bn=2an,问是否存在正整数n,t,使$\frac{{{K_n}-t{b_n}}}{{{K_{n+1}}-t{b_{n+1}}}}<\frac{1}{16}$成立?若存在,求出正整数n,t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l的方程为x=-2,且直线l与x轴交于点M,圆O:x2+y2=1与x轴交于A,B两点.
(1)过M点的直线l1交圆于P、Q两点,且圆孤PQ恰为圆周的$\frac{1}{4}$,求直线l1的方程;
(2)若椭圆中a,c满足$\frac{a^2}{c}$=2,求中心在原点,且与圆O恰有两个公共点的椭圆方程;
(3)过M点作直线l2与圆相切于点N,设(2)中椭圆的两个焦点分别为F1,F2,求三角形△NF1F2面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.记Min{a,b}为a、b两数中的最小值,当正数x,y变化时,令t=Min{4x+y,$\frac{4y}{{{x^2}+5{y^2}$},则t的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设命题P:“?x2<1,x<1”,-p为(  )
A.?x2≥1,X<1B.?x2<1,x≥1C.?x2<1,x≥1D.3x≥1,x≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x+$\frac{a}{x}+1$的值域为(-∞,-1]∪[3,+∞),则a=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

同步练习册答案