精英家教网 > 高中数学 > 题目详情
2.若椭圆的方程为4x2+9y2-36=0,则其长轴长为(  )
A.3B.4C.6D.9

分析 首先将椭圆方程化成标准方程,能够得出a=3则问题迎刃而解了.

解答 解:由4x2+9y2-36=0,得
$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1,
∴a2=9,解得a=3.
因此椭圆的长轴长为2a=6.
故选:C.

点评 本题考查了椭圆的标准方程及其性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,内角A,B,C 所对的边分别为a,b,c,已知a2,$\frac{3{b}^{2}}{4}$,c2成等差数列,则sinB的最大值为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{1}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知棱锥S-ABCD中,底面ABCD为正方形,SA⊥底面ABCD,SA=AB,则异面直线AC与SD所成角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=kax-a-x(a>0且a≠1,k∈R),f(x)是定义域为R的奇函数.
(1)求k的值
(2)已知f(1)=$\frac{15}{4}$,函数g(x)=a2x+a-2x-2f(x),x∈[0,1],求g(x)的值域;
(3)在第(2)问的条件下,试问是否存在正整数λ,使得f(2x)≥λ•f(x)对任意x∈[-$\frac{1}{2}$,$\frac{1}{2}$]恒成立?若存在,请求出所有的正整数λ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“a=3”是“函数f(x)=x2-2ax+2在区间[3,+∞)内单调递增”的(  )条件.
A.充分非必要B.必要非充分
C.充要D.既非充分也非必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点A(m,-3)在抛物线y2=2px(p>0)上,它到抛物线焦点F的距离为5,求m和p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x2-mlnx在[2,+∞)上单调递增,则实数m的取值范围为(-∞,8].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列函数的定义域
(1)y=$\sqrt{x+3}$+$\frac{1}{x+2}$
(2)y=$\sqrt{lo{g}_{3}x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图的伪代码输出的结果S为17

查看答案和解析>>

同步练习册答案