| A. | 充分非必要 | B. | 必要非充分 | ||
| C. | 充要 | D. | 既非充分也非必要 |
分析 先求出函数f(x)=x2-2ax+2的单调增区间,然后由题意知[3,+∞)是它单调增区间的子区间,利用对称轴与区间的位置关系即可求出a的范围,再根据充分必要条件进行求解.
解答 解:∵函数f(x)=x2-2ax+2在区间[3,+∞)内单调递增,
可得f(x)的对称轴为x=-$\frac{-2a}{2}$=a,开口向上,可得a≤3,
∴“a=3”⇒“函数f(x)=x2-2ax+2在区间[3,+∞)内单调递增”,
∴“a=3”是“函数f(x)=x2-2ax+2在区间[3,+∞)内单调递增”的充分而不必要条件,
故选:A.
点评 此题主要考查二次函数的性质及其对称轴的应用,以及充分必要条件的定义,是一道基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | $\frac{\sqrt{15}}{4}$ | D. | -$\frac{\sqrt{15}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com