精英家教网 > 高中数学 > 题目详情
5.函数y=loga(3x-7)+1的图象恒过定点($\frac{8}{3}$,1).

分析 由loga1=0,知3x-7=1,即x=$\frac{8}{3}$时,y=1,由此能求出定点的坐标.

解答 解:∵loga1=0,
∴3x-7=1,即x=$\frac{8}{3}$时,y=1,
∴定点的坐标是P($\frac{8}{3}$,1).
故答案为:($\frac{8}{3}$,1).

点评 本题考查对数函数的性质和特殊点,解题时要认真审题,仔细解答,避免出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)是幂函数,其图象过点(2,8),定义在R上的函数y=F(x)是奇函数,当x>0时,F(x)=f(x)+1,
(1)求幂函数 f(x)的解析式;
(2)求F(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+2)x成立,且f(2)=12.
(1)求f(0)的值;
(2)在(1,4)上存在x0∈R,使得f(x0)-8=ax0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知棱锥S-ABCD中,底面ABCD为正方形,SA⊥底面ABCD,SA=AB,则异面直线AC与SD所成角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.a=log${\;}_{\frac{1}{3}}$5,b=log${\;}_{\frac{1}{2}}$$\frac{1}{5}$,c=($\frac{1}{2}$)0.5则(  )
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=kax-a-x(a>0且a≠1,k∈R),f(x)是定义域为R的奇函数.
(1)求k的值
(2)已知f(1)=$\frac{15}{4}$,函数g(x)=a2x+a-2x-2f(x),x∈[0,1],求g(x)的值域;
(3)在第(2)问的条件下,试问是否存在正整数λ,使得f(2x)≥λ•f(x)对任意x∈[-$\frac{1}{2}$,$\frac{1}{2}$]恒成立?若存在,请求出所有的正整数λ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“a=3”是“函数f(x)=x2-2ax+2在区间[3,+∞)内单调递增”的(  )条件.
A.充分非必要B.必要非充分
C.充要D.既非充分也非必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x2-mlnx在[2,+∞)上单调递增,则实数m的取值范围为(-∞,8].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△ABC中,AB=2,3acosB-bcosC=ccosB,点D在线段BC上.
(Ⅰ)若∠ADC=$\frac{3π}{4}$,求AD的长;
(Ⅱ)若BD=2DC,△ACD的面积为$\frac{4}{3}\sqrt{2}$,求$\frac{sin∠BAD}{sin∠CAD}$的值.

查看答案和解析>>

同步练习册答案