分析 (1)令x=2,y=0,则f(2+0)-f(0)=(2+0+2)×2=8.即可得出.
(2)令y=0,易得:f(x)=x2+2x+4.在(1,4)上存在x0∈R,使得f(x0)-8=ax0成立,等价于方程x2+2x=4-8=ax在(1,4)内有解.即a=x+2-$\frac{4}{x}$,1<x<4.设函数g(x)=x-$\frac{4}{x}$+2(x∈(1,4)).证明其单调性即可得出.
解答 解:(1)令x=2,y=0,则f(2+0)-f(0)=(2+0+2)×2=8.
∵f(2)=12,∴f(0)=4.
(2)令y=0,易得:f(x)=x2+2x+4.
在(1,4)上存在x0∈R,使得f(x0)-8=ax0成立,
等价于方程x2+2x=4-8=ax在(1,4)内有解.
即a=x+2-$\frac{4}{x}$,1<x<4.
设函数g(x)=x-$\frac{4}{x}$+2(x∈(1,4)).
设x1,x2是(1,4)上任意两个实数,且x1<x2,则
g(x1)-g(x2)=(x1-x2)$(1+\frac{4}{{x}_{1}{x}_{2}})$.
由1<x1<x2<4,得x1-x2<0,
于是g(x1)-g(x2)<0,
即g(x1)<g(x2),
所以函数g(x)=x-$\frac{4}{x}$+2在(1,4)上是增函数.
∴实数a的取值范围是(-1,5).
点评 本题考查了函数的奇偶性与单调性、不等式的解法,考查了分类讨论、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | $\frac{\sqrt{15}}{4}$ | D. | -$\frac{\sqrt{15}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,3) | B. | (1,+∞) | C. | (3,+∞) | D. | (-∞,1)∪(3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>0且b=0 | B. | a>0且b>0 | C. | a=0且b>0 | D. | a<0且b=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com