精英家教网 > 高中数学 > 题目详情
7.已知$\frac{π}{2}$<α<π,2sin2α=cosα,则sin(α+$\frac{π}{2}$)=(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{\sqrt{15}}{4}$D.-$\frac{\sqrt{15}}{4}$

分析 由已知及二倍角的正弦函数公式可求sinα=$\frac{1}{4}$,cosα<0,利用同角三角函数基本关系式即可计算得解.

解答 解:∵$\frac{π}{2}$<α<π,可得:cosα<0,
∴2sin2α=4sinαcosα=cosα,可得:sinα=$\frac{1}{4}$,
∴cosα=-$\sqrt{1-(\frac{1}{4})^{2}}$=-$\frac{\sqrt{15}}{4}$,
∴sin(α+$\frac{π}{2}$)=cosα=-$\frac{\sqrt{15}}{4}$.
故选:D.

点评 本题主要考查了二倍角的正弦函数公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(  )
A.$\frac{1}{3}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.偶函数f(x)在(0,+∞)上的解析式是f(x)=x(1+x),则在(-∞,0)上的函数解析式是(  )
A.f(x)=-x(1-x)B.f(x)=x(1+x)C.f(x)=-x(1+x)D.f(x)=x(x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)是幂函数,其图象过点(2,8),定义在R上的函数y=F(x)是奇函数,当x>0时,F(x)=f(x)+1,
(1)求幂函数 f(x)的解析式;
(2)求F(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知0<x<$\frac{π}{2}$,sinx-cosx=$\frac{π}{4}$,存在a,b,c(a,b,c∈N*),使得(a-πb)tan2x-ctanx+(a-πb)=0,则2a+3b+c=(  )
A.50B.70C.110D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,内角A,B,C 所对的边分别为a,b,c,已知a2,$\frac{3{b}^{2}}{4}$,c2成等差数列,则sinB的最大值为(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{5}}{3}$C.$\frac{1}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{m}$=(2cosx,t)(t∈R),$\overrightarrow{n}$=(sinx-cosx,1),函数y=f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,将y=f(x)的图象向左平移$\frac{π}{8}$个单位长度后得到y=g(x)的图象且y=g(x)在区间[0,$\frac{π}{4}$]内的最大值为$\sqrt{2}$.
(1)求t的值及y=f(x)的最小正周期;
(2)若x∈[0,π],求y=f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+2)x成立,且f(2)=12.
(1)求f(0)的值;
(2)在(1,4)上存在x0∈R,使得f(x0)-8=ax0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“a=3”是“函数f(x)=x2-2ax+2在区间[3,+∞)内单调递增”的(  )条件.
A.充分非必要B.必要非充分
C.充要D.既非充分也非必要

查看答案和解析>>

同步练习册答案